References
- M. Johnson and K. Zumbrun, Nonlinear stability of spatially-periodic traveling-wave solutions of systems of reaction diffusion equations, Ann. Inst. H. Poincare Anal. Non Lineaire, 28 (2011), no. 4, 471-483. https://doi.org/10.1016/j.anihpc.2011.05.003
- M. Johnson, P. Noble, M. Rodrigues, and K. Zumbrun, Nonlocalized Modulation of Periodic Reaction Diffusion Waves: Nonlinear Stability, Arch. Rational Mech. Anal. 207 (2013), 693-715. https://doi.org/10.1007/s00205-012-0573-9
- M. Johnson, P. Noble, M. Rodrigues, and K. Zumbrun, Behavior of periodic solu-tions of viscous conservation laws under localized and nonlocalized perturbations, Invent. Math. 197 (2014), no. 1, 115-213. https://doi.org/10.1007/s00222-013-0481-0
- S. Jung, Pointwise asymptotic behavior of modulated periodic reaction-diffusion waves, J. Differential Equations 253 (2012), no. 6, 1807-1861. https://doi.org/10.1016/j.jde.2012.05.014
- S. Jung, Pointwise stability estimates for periodic traveling wave solutions of systems of viscous conservation laws, J. Differential Equations 256 (2014), no. 7, 2261-2306. https://doi.org/10.1016/j.jde.2014.01.001
- S. Jung and K. Zumbrun, Pointwise nonlinear stability of nonlocalized modulated periodic reactiondiffusion waves, J. Differential Equtions 261 (2016), no. 7, 3941-3963. https://doi.org/10.1016/j.jde.2016.06.013
- T. Kapitula and K. Promislow, Spectral and dynamical stability of nonlinear waves, Applied Mathematical Sciences, 185. Springer, New York, 2013.
- G. Schneider, Diffusive stability of spatial periodic solutions of the Swift-Hohenberg equation, (English. English summary) Comm. Math. Phys. 178 (1996), no. 3, 679-702. https://doi.org/10.1007/BF02108820