3D Shape Reconstruction using the Focus Estimator Value from Multi-Focus Cell Images

다초점 세포 영상으로부터 추정된 초점 값을 이용한 3차원 형태 복원

  • Choi, Yea-Jun (Department of Computer Science and Engineering, Sejong University) ;
  • Lee, Dong-Woo (Department of Biomedical Engineering, Konyang University) ;
  • Kim, Myoung-Hee (Department of Computer Science and Engineering, Ewha Womans University) ;
  • Choi, Soo-Mi (Department of Computer Science and Engineering, Sejong University)
  • 최예준 (세종대학교 컴퓨터공학과) ;
  • 이동우 (건양대학교 의공학부) ;
  • 김명희 (이화여자대학교 컴퓨터공학과) ;
  • 최수미 (세종대학교 컴퓨터공학과)
  • Published : 2017.09.01

Abstract

As 3D cell culture has recently become possible, it has been able to observe a 3D shape of cell and volume. Generally, 3D information of a cell should be observed with a special microscope such as a confocal microscope or an electron microscope. However, a confocal microscope is more expensive than a conventional microscope and takes longer time to capture images. Therefore, there is a need for a method that can reconstruct the 3D shape of cells using a common microscope. In this paper, we propose a method of reconstructing 3D cells using the focus estimator value from multi-focal fluorescence images of cells. Initially, 3D cultured cells are captured with an optical microscope by changing the focus. Then the approximate position of the cells is assigned as ROI (Region Of Interest) using the circular Hough transform in the images. The MSBF (Modified Sliding Band Filter) is applied to the obtained ROI to extract the outlines of the cell clusters, and the focus estimator values are computed based on the extracted outlines. Using the computed focus estimator values and the numerical aperture (NA) of the microscope, we extract the outline of the cell cluster considering the depth and reconstruct the cells into 3D based on the extracted outline. The reconstruction results are examined by comparing with the combined in-focus portions of the cell images.

최근 3차원 세포 배양이 가능해 지면서 세포의 부피, 3차원 형태 등을 보다 정확하게 확인할 수 있게 되었다. 일반적으로 세포의 3차원 단층 정보는 공초점 현미경 또는 전자 현미경과 같은 특수한 현미경을 이용하여 관찰 해야 한다. 그러나 공초점 현미경은 일반 현미경에 비해 비용이 비싸며, 촬영 시간이 오래 걸린다. 따라서 일반적으로 사용되는 광학 현미경으로 세포의 3차원 형태복원을 하는 방법이 필요하다. 본 논문에서는 다초점 형광 영상을 기반으로 영상의 추정된 초점 값(focus estimator value)을 이용해 세포를 3차원으로 형태 복원하는 방법을 제안한다. 먼저 3차원으로 배양된 세포를 광학 현미경으로 초점을 변경 하면서 다초점 영상들을 촬영한다. 이후 영상에서 circular Hough transform을 이용하여 세포 군집의 대략적인 위치를 ROI(Region Of Interest)로 정한다. 획득한 ROI에 MSBF(Modified Sliding Band Filter)를 적용하여 ROI 내에 세포 군집의 외곽선을 추출하고, 추출된 외곽선을 기준으로 추정 초점 값을 구한다. 계산된 초점 값과 현미경의 NA(Numerical Aperture)을 이용하여 깊이를 고려한 세포 군집의 외곽선을 추출하고 추출된 외곽선을 통해 세포들을 3차원으로 형태 복원한다. 복원 결과는 세포 영상의 in-focus가 된 부분들을 하나로 합친 영상과 비교하여 검증한다.

Keywords

References

  1. ZMBmicroscope education paper http://www.zmb.uzh.ch/static/toolbox/assets/Script_2015_Toolbox.pdf
  2. M. W. Tibbitt, and K. S. Anseth, "Hydrogels as extracellular matrix mimics for 3D cell culture", Biotechnology and Bioengineering, vol. 103, no. 4, pp. 655-663, 2009. https://doi.org/10.1002/bit.22361
  3. J. Kisiday, M. Jin, B. Kurz, H. Hung, C. Semino, S. Zhang, and A. J. Grodzinsky, "Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair", Proceedings of the National Academy of Sciences, vol. 99, no. 15, pp. 9996-10001, 2002. https://doi.org/10.1073/pnas.142309999
  4. G. Dontu, and M. S. Wicha, "Survival of Mammary Stem Cells in Suspension Culture: Implications for Stem Cell Biology and Neoplasia", Journal of Mammary Gland Biology and Neoplasia, vol. 10, no. 1, pp. 75-86, 2005. https://doi.org/10.1007/s10911-005-2542-5
  5. P. Quelhas, M. Marcuzzo, A. M. Mendonça, M. J. Oliveira, and C. A. Campilho, "Cancer Cell Detection and Invasion Depth Estimation in Brightfield Images", Proceedings of British Machine Vision Conference, BMVC, pp. 1-10, 2009.
  6. R. C. Kennedy, G. E. P. Glen, and A. C. Hunt, "Implementing a Cell-centered, Agent-based Framework with Flexible Environment Granularities Using MASON and VTK", Proceedings of the Agent-Directed Simulation Symposium, Society for Computer Simulation International, pp. 9:1-9:6, 2016.
  7. Y. Y. Wang, and Z. E. Wang, "Difference Curvature Driven Anisotropic Diffusion for Image Denoising Using Laplacian Kernel", Applied Mechanics and Materials, vol. 347, pp. 2412-2417, 2013.
  8. A. Genovesio, T. Liedl and V. Emiliani, W. J. Parak, M. CoopeyMoisan, and J. C. Olivo-Marin, "Multiple particle tracking in 3D+t microscopy: method and application to the tracking of endocytosed quantum dots", IEEE Transactions on Image Processing, vol. 15, no. 5, pp. 1062-1070, 2006. https://doi.org/10.1109/TIP.2006.872323
  9. C. S. Pereira, H. Fernandes, A. M. Mendonca, and A. Campilho, "Detection of Lung Nodule Candidates in Chest Radiographs", Proceedings of Pattern Recognition and Image Analysis: Third Iberian Conference, IbPRIA2007, pp. 170-177, 2007.
  10. C. D. Rubeto, A. Dempster, S. Khan, and B. Jarra, "Segmentation of blood images using morphological operators", Proceedings of 15th International Conference on Pattern Recognition. ICPR-2000, vol. 3, pp. 387-400, 2000.
  11. J. M. Bewes, N. Suchowerska and D. R. Mckenzie, "Automated cell colony counting and analysis using the circular Hough image transform algorithm (CHiTA)", Physics in Medicine and Biology, vol. 53, no. 21, pp. 5991-6008, 2008. https://doi.org/10.1088/0031-9155/53/21/007
  12. J. T. Kwak, S. M. Hewitt, S. Sinha, and R. Bhargava, "Multimodal microscopy for automated histologic analysis of prostate cancer", BMC Cancer, vol. 11, no. 1, pp. 62-77, 2011. https://doi.org/10.1186/1471-2407-11-62
  13. W. K. Jeong, J. Schneider, S. Turney, B. E. Faulkner-Jones, D. Meyer, R. Westermann, R. C. Reid, J. Lichtman, and H. Pfister, "Interactive Histology of Large-Scale Biomedical Image Stacks", IEEE Transactions on Visualization and Computer Graphics, vol. 16,no. 6, pp. 1386-1395, 2010. https://doi.org/10.1109/TVCG.2010.168
  14. B. Huang, W. Wang, M. Bates, and X. Zhuang, "Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy", Science, vol. 319, no. 5864, pp. 810-813, 2008. https://doi.org/10.1126/science.1153529
  15. Y. Lu, Y. L. Chiu, and I. P. Jones, "Three-dimensional analysis of the microstructure and bio-corrosion of Mg-Zn and Mg-Zn-Ca alloys", Materials Characterization, vol. 112, pp. 113-121, 2016. https://doi.org/10.1016/j.matchar.2015.12.008
  16. C. J Du, P. T. Hawkins, L. R. Stephens, and T. Bretschneider, "3D time series analysis of cell shape using Laplacian approaches", BMC Bioinformatics, vol. 14, no. 1, pp. 1:296-15:296, 2013.
  17. plate & well image https://simple.wikipedia.org/wiki/Microtiter_plate