DOI QR코드

DOI QR Code

Positioning Blueprints with Moving Least Squares Optimization

이동최소자승법 최적화를 이용한 도면 배치

  • Received : 2017.05.11
  • Accepted : 2017.08.31
  • Published : 2017.09.01

Abstract

We propose an efficient method to determine the position of blueprint by using a vector field with optimized MLS(Moving Least Squares). Typically, a professional architectural design office takes a long time to work as well as a high processing cost because the designer manually determines the location to place the buildings in a specific area. In order to solve this inefficient problem, we propose a method to automatically determine the location of the blueprint based on the optimized MLS method. In the proposed framework, the designer selects the desired region in the actual city data and calculates the flow of the vector based on the region. Use the optimized MLS method to extract the vector field and determine the amount of rotation of the drawing based on this field. The location of the blueprint determined by the proposed method is very similar to the flow seen when the actual building is located. As a result, the efficiency of the overall architectural design process is further improved by reducing the designer's inefficient workforce.

우리는 최적화된 이동최소자승법으로 구축된 벡터장을 이용하여 도면의 배치를 효율적으로 처리할 수 있는 방법을 제안한다. 일반적으로 전문 건축설계사무소에서는 특정영역에 건물들을 배치시키기 위해 디자이너가 수동으로 직접 위치를 결정하기 때문에 처리 비용이 클 뿐만 아니라 작업시간도 오래 걸린다. 이 비효율적인 문제를 해결하기 위해 우리는 최적화된 이동최소자승법을 기반으로 도면의 배치를 자동으로 결정할 수 있는 방법을 제안한다. 제안된 프레임워크에서는 우선 디자이너가 실제 건축설계를 원하는 사업장 영역을 선택하고 이 영역을 기반으로 지형의 흐름을 계산한다. 이동최소자승법을 최적화시켜 벡터장을 추출하고, 이 벡터장을 기반으로 도면의 회전 양을 결정한다. 제안된 방법으로 얻어진 도면배치는 실제로 건물을 배치할 때 나타나는 흐름과 매우 유사한 특징을 갖고 있으며, 결과적으로 디자이너의 비효율적인 노동력을 줄여 전반적인 건축설계과정의 효율성을 한층 높였다.

Keywords

References

  1. R. J. Fowler, M. S. Paterson, and S. L. Tanimoto, "Optimal packing and covering in the plane are NP-complete," Information processing letters, vol. 12, no. 3, pp. 133-137, 1981. https://doi.org/10.1016/0020-0190(81)90111-3
  2. K. A. Dowsland and W. B. Dowsland, "Solution approaches to irregular nesting problems," European journal of operational research, vol. 84, no. 3, pp. 506-521, 1995. https://doi.org/10.1016/0377-2217(95)00019-M
  3. J. A. Bennell and J. F. Oliveira, "A tutorial in irregular shape packing problems," Journal of the Operational Research Society, vol. 60, no. 1, pp. S93-S105, 2009. https://doi.org/10.1057/jors.2008.169
  4. B. S. Baker, S. Fortune, and S. R. Mahaney, "Polygon containment under translation," Journal of Algorithms, vol. 7, no. 4, pp. 532-548, 1986. https://doi.org/10.1016/0196-6774(86)90017-9
  5. F. Avnaim and J. D. Boissonnat, "Polygon placement under translation and rotation," in Annual Symposium on Theoretical Aspects of Computer Science, 1988, pp. 322-333.
  6. R. Martin and P. Stephenson, "Putting objects into boxes," Computer-Aided Design, vol. 20, no. 9, pp. 506-514, 1988. https://doi.org/10.1016/0010-4485(88)90040-1
  7. R. B. Grinde and T. M. Cavalier, "Containment of a single polygon using mathematical programming," European journalofoperationalresearch,vol.92,no.2,pp.368-386,1996.
  8. V. J. Milenkovic, "Rotational polygon overlap minimization and compaction," Computational Geometry, vol. 10, no. 4, pp. 305-318, 1998. https://doi.org/10.1016/S0925-7721(98)00012-1
  9. F. Avnaim and J. Bsissonnat, "Simultaneous containment of several polygons," in Proceedings of the third annual symposium on Computational geometry, 1987, pp. 242-247.
  10. R. B. Grinde and T. M. Cavalier, "A new algorithm for the two-polygon containment problem," Computers & operations research, vol. 24, no. 3, pp. 231-251, 1997. https://doi.org/10.1016/S0305-0548(96)00050-0
  11. S. Battiato, G. DiBlasi, G. M. Farinella, and G.Gallo,"Digital mosaic frameworks-an overview,"Computer Graphics Forum, vol. 26, no. 4, pp. 794-812, 2007.
  12. G. Puglisi and S. Battiato, "Artificial mosaic generation," in Image and Video-Based Artistic Stylisation, 2013, pp. 189-209.
  13. A. Hausner, "Simulating decorative mosaics," in Proceedings of the 28th annual conference on Computer graphics and interactive techniques, 2001, pp. 573-580.
  14. V. Milenkovic, "Multiple translational containment part ii: Exact algorithms," Algorithmica, vol. 19, no. 1-2, pp. 183-218, 1997. https://doi.org/10.1007/PL00014416
  15. V. J. Milenkovic,"Rotational polygon containment and minimum enclosure using only robust 2d constructions," Computational Geometry, vol. 13, no. 1, pp. 3-19, 1999. https://doi.org/10.1016/S0925-7721(99)00006-1
  16. Y. Liu, O. Veksler, and O. Juan, "Generating classic mosaics with graph cuts," Computer Graphics Forum, vol. 29, no. 8, pp. 2387-2399, 2010.
  17. S. Battiato, A. Milone, and G. Puglisi, "Artificial mosaic generation with gradient vector flow and tile cutting," Journal of Electrical and Computer Engineering, vol. 2013, p. 8, 2013.
  18. N. Akinci, J. Cornelis, G. Akinci, and M. Teschner, "Coupling elastic solids with smoothed particle hydrodynamics fluids," Computer Animation and Virtual Worlds, vol. 24, no. 3-4, pp. 195-203, 2013. https://doi.org/10.1002/cav.1499
  19. M. Muller, D. Charypar, and M. Gross, "Particle-based fluid simulation for interactive applications," in ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2003, pp. 154-159.
  20. N. MIDC, "National renewable energy laboratory measurement and instrumentation data center (nrel midc) solar position and intensity (solpos) calculator," Online at http://www.nrel.gov/midc/solpos/solpos.html, 2010.
  21. S. King, Mosaic techniques & traditions: projects & designs from around the world. Sterling Publishing Company, Inc., 2006.