DOI QR코드

DOI QR Code

Growth of Radish Plug Seedlings as Influenced by Various Pre-planting Nitrogen Levels in Inert Media

기비로 혼합된 질소 수준이 무 플러그 묘 생장에 미치는 영향

  • Sung, Jwa Kyung (Division of Soil and Fertilizers, National Institute of Agricultural Science, Rural Development Administration) ;
  • Park, Myong Sun (Department of Horticultural Sciences, College of Agriculture & Life Sciences, Chungnam National University) ;
  • Choi, Jong Myung (Department of Horticultural Sciences, College of Agriculture & Life Sciences, Chungnam National University)
  • 성좌경 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 박명선 (충남대학교 농업생명과학대학 원예학과) ;
  • 최종명 (충남대학교 농업생명과학대학 원예학과)
  • Received : 2017.05.19
  • Accepted : 2017.07.04
  • Published : 2017.07.31

Abstract

Objective of this research was to investigate the influence of pre-plant nitrogen levels in root media on plug seedling growth of radish cv. Soksungbommu. To achieve the research purpose, a root medium, the mixture of perlite, coir dust, and peatmoss (volume percentage of 30:35:35) was formulated and the N levels incorporated during mixing were controlled to 0, 100, 250, 500, 750, 1,000, and $1,500mg{\cdot}L^{-1}$. Then, the seeds were sown into 72-cell plug trays in which the root medium was packed. The measurements of growth and analysis of tissue and root media were conducted 2 and 4 weeks after sowing. Elevation of pre-plant N levels raised EC and turned down pH of root media. But, as seedling grew, the pH rose and EC get lowered in all treatments. The EC as well as $NH_4-N$ and $NO_3-N$ concentrations of root media declined gradually until week 2, but those declined sharply between weeks 2 to 4. The seedling growth 2 weeks after sowing showed quadratic response to pre-plant N levels with the highest growth in $250mg{\cdot}L^{-1}$ treatment and lagging growth in the treatments of lower or higher N levels than $250mg{\cdot}L^{-1}$. The seedling growth 4 weeks after sowing showed also quadratic response with the highest growth in $500mg{\cdot}L^{-1}$ treatment. The tissue N contents were get higher and those of K, Ca, and Mg were get lower as pre-plant N levels were elevated. Above results suggest that lower than $250mg{\cdot}L^{-1}$ in pre-plant N levels is optimistic for growth of plug seedling and avoidance of toxic injury in very young stage.

상토에 기비로 혼합된 질소 수준이 무 '속성대형봄무'의 플러그 묘 생장에 미치는 영향을 구명하기 위하여 본 연구를 수행하였다. 펄라이트:코이어더스트:피트모스를 용적기준 30:35:35%의 비율로 조절한 상토를 조제하는 과정에서 0, 100, 250, 500, 750, 1,000 및 $1,500mg{\cdot}L^{-1}$ 비율로 질소를 기비로써 혼합하고 72구 플러그 트레이에 충전하였다. 이후 무 종자를 파종하고 4주간 재배한 후 지상부 생육과 식물체내 무기원소 함량을 분석하였으며, 상토 추출액의 pH, EC 및 무기원소 농도는 매주 분석하였다. 파종 후 질소 시비수준이 높을수록 pH가 낮고 EC가 높은 경향이었지만, 생장이 진행됨에 따라 모든 처리의 pH가 점차 상승하고 EC가 낮아지는 경향을 보였다. 상토의 EC 및 $NH_4$$NO_3$ 농도는 파종 2주 후까지 완만하게, 2주 후부터 4주 후까지 급격히 낮아지는 경향을 보였다. 질소시비수준에 따른 무 유묘의 생장반응을 조사한 결과 재배 2주후에는 질소 시비수준이 $250mg{\cdot}L^{-1}$ 처리의 생장이 가장 우수하고 이보다 낮거나 높은 질소 농도에서 생장이 저조한 2차곡선회귀적 경향을, 그리고 파종 4주 후에는 $500mg{\cdot}L^{-1}$ 처리에서 생장이 가장 우수하고 높거나 낮은 질소 시비수준에서 생장이 저조한 2차곡선회귀적 경향을 나타냈다. 재배 4주 후 질소 시비수준이 높아질수록 T-N은 높고, K, Mg 및 Ca 함량이 낮아지는 경향을 보였으며, 생장이 우수하였던 250과 $500mg{\cdot}L^{-1}$ 시비구의 질소함량이 각각 4.96%와 5.74%였다. 이상의 결과를 요약하면 질소 시비수준을 $250mg{\cdot}L^{-1}$ 이하로 조절해야 식물체가 어린 시기에 고농도 질소에 의해 생장 억제를 피할 수 있다고 판단하였다.

Keywords

References

  1. Argo, W.R. 1998. Root medium chemical properties. Hort- Technology 8:486-494.
  2. Argo, W.R. and J.A. Biernbaum. 1996. The Effect of lime, irrigation-water source, and water-soluble fertilizer on rootzone pH, electrical conductivity, and macronutrient management of container root media with impatiens. J. Amer. Soc. Hortic. Sci. 121:442-452.
  3. Bunt, A.C. 1988. Media and mixes for container grown plants. Unwin Hyman, London.
  4. Choi, J.M. and C.W. Lee. 2012. Influence of elevated phosphorus levels in nutrient solution on micronutrient uptake and deficiency symptom development in strawberry cultured with fertigation system. J. Plant Nutr. 35:1349-1358. https://doi.org/10.1080/01904167.2012.684127
  5. Choi, J.M., C.W. Lee, and J.P. Chun. 2012. Optimization of substrate formulation and mineral nutrition during the production of vegetable seedling grafts. Hort. Environ. Biotechnol. 53:212-221. https://doi.org/10.1007/s13580-012-0108-1
  6. Choi, J.M., C.W. Lee, and J.S. Park. 2015. Performance of seedling grafts of tomato as influenced by root substrate formulations, fertigation leaching fractions, and N concentrations in fertilizer solution. Hort. Environ. Biotechnol. 56:17-21. https://doi.org/10.1007/s13580-015-0040-2
  7. Marschner, P. 2012. Marschner's mineral nutrition of higher plants. 3rd ed. Academic Press Inc., San Diego, USA.
  8. Nelson, P.V. 2003. Greenhouse operation and management. 6th ed. Prentice Hal, Englewood Cliffs, NJ. USA
  9. Nelson, P.V., J.S. Huang, W.C. Fonteno, and D.A. Bailey. 1996. Fertilizing for perfect plugs. In: D. Hamrick (ed.). Grower talks on plugs II. Ball Publishing. Batavia. IL. p.86-89.
  10. NIAST. 2000. Analysis methods of soil and plant. National Institute of Agricultural Science and Technology. Rural Development Administration, Suwon, Korea (In Korean).
  11. Styer, R.C. and D.S. Koranski. 1997. Plug & transplant production: a grower's guide. Ball Publishing. Batavia. IL. USA.