DOI QR코드

DOI QR Code

저온 저장 시 규산 처리에 의한 토마토 묘소질 향상

Improvement of Tomato Seedling Quality under Low Temperature by Application of Silicate Fertilizer

  • Vu, Ngoc-Thang (Faculty of Agronomy, Vietnam National University of Agriculture) ;
  • Tran, Anh-Tuan (Faculty of Agronomy, Vietnam National University of Agriculture) ;
  • Le, Thi-Tuyet-Cham (Faculty of Agronomy, Vietnam National University of Agriculture) ;
  • Na, Jong-Kuk (Department of Controlled Agriculture, Kangwon National University) ;
  • Kim, Si-Hong (Department of Horticulture, Kangwon National University) ;
  • Park, Jong-Man (Department of Horticulture, Kangwon National University) ;
  • Jang, Dong-Cheol (Department of Horticulture, Kangwon National University) ;
  • Kim, Il-Seop (Department of Horticulture, Kangwon National University)
  • 투고 : 2017.02.07
  • 심사 : 2017.07.18
  • 발행 : 2017.07.31

초록

규산 시비가 토마토 플러그 묘소질에 미치는 영향과 묘의 저온저장시 규산의 저온장해 경감효과를 검토하였다. 'Rapito' 품종을 공시하여 30일간 32구 규격의 플러그 트레이에서 육묘한 뒤, 여섯 개의 규산 처리농도구 (8, 16, 32, 64, 128 및 256mM)를 설계하여 20일 동안 주 2회 관주 처리한 뒤, 묘소질을 대조구와 비교하였다. 처리 농도는 16mM과 32mM 처리가 초장, 엽면적, 생체중, T/R율 및 근권부 발육 등 대부분의 생육지표에서 타 처리구에 비해 양호했으며, 특히 16mM의 농도에서 가장 좋은 묘소질을 보였으나, 64mM 이상의 고농도에서는 대조구에 비해 전반적으로 생육이 억제되는 경향을 보였다. 토마토 묘의 생리적 반응에서 엽온에서는 처리구별 차이가 나타나지 않았으나, 증산율은 32mM이상의 농도 처리구에서 기공확산 저항이 증가하면서 증산율이 감소되는 경향을 보였다. 또한, 처리 횟수에 따른 효과를 검토하기 위해 16mM농도의 규산을 20일 동안 6, 10, 20회 관주처리 한 결과, 대부분의 생육지표에서 처리 횟수간에는 큰 차이가 없었으나, 무처리구에 비해 묘소질이 향상되었으며, 특히 뿌리표면적, 근장, root tip수등 근권부의 생육이 현저히 증가하였다. 아울러 규산처리가 저온저장시 토마토 묘의 저온장해를 감소시키는 효과가 있음을 확인하였다.

The object of this study was to improve tomato seedling quality in low temperature(below 7, $10^{\circ}C$ during night time or daily mean air temperature was $18^{\circ}C$) by application of silicate fertilizer. Six different silicate fertilizer concentrations (8, 16, 32, 64, 128, and 256mM) or water as the control were applied to tomato seedlings twice a week for 20 days. Positive effects were observed in the growth parameters of the seedlings treated with 16 and 32mM silicate fertilizer; the most effective concentration of silicate at which seedlings showed the best performance was 16mM. However, a high concentration of silicate (256mM) caused negative effects on the growth. The transpiration rate decreased alongside with the increase of silicate concentration up to 32mM, possibly due to the increased stomatal diffusive resistance. Silicate stimulated the growth and development of tomato seedlings, resulting in increased growth parameters and root morphology. However, no significant differences were observed among treatment numbers of soil-drenching wuth the silicate (6, 10, or 20 times with 16mM) for 20 days, suggesting that silicate treatment with 6 times may be sufficient to induce the silicate effects. The application of 16mM of silicate fertilizer reduced relative ion leakage and chilling injury during low temperature storage. In addition, the seedlings treated with silicate fertilizer recovered faster than those without silicate treatment after low temperature storage.

키워드

참고문헌

  1. Abou-Baker, N.H., M. Abd-Eladl, and M.M. Abbas. 2011. Use of silicate and different cultivation practices in alleviating salt stress effect on bean plants. Australian Journal of Basic and Applied Science. 5:769-781.
  2. Agarie, S., N. Hanaoka, O. Ueno, A. Miyazaki, F. Kubota, W. Agata, and P.B. Kaufman. 1998. Effect of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod. Sci. 1:96-103. https://doi.org/10.1626/pps.1.96
  3. Aroca, R., R. Porcel, and J.M. Ruiz-Lozano. 2011. Regulation of root water uptake under abiotic stress conditions. J. Exp. Bot. 63:43-57.
  4. Bruggemann, W., W.A.W. Van Der Kooij, and P.R. Van Hasselt. 1992. Long-term chilling of young tomato plants under low light and subsequent recovery. I. Growth, development and photosynthesis. Planta. 186:172-178. https://doi.org/10.1007/BF00196246
  5. Criddle, R.S., B.N Smith, and L.D. Hansen. 1997. A respiration based description of plant growth rate responses to temperature. Planta. 201:441-445. https://doi.org/10.1007/s004250050087
  6. Epstein, E. (1999) Silicon. Annu. Rev. Plant Physiol. Plant Mol. Bol. 50:641-664. https://doi.org/10.1146/annurev.arplant.50.1.641
  7. Gao, X., C. Zhou, L. Wang, and F. Zhang. 2006. Silicon decreases transpiration rate and conductance from stomata of maize plants. J. Plant Nutr. 29:1637-1647. https://doi.org/10.1080/01904160600851494
  8. Gong, H., K. Chen, G. Chen, S. Wang, and C. Zhang. 2003. Effects of silicon on growth of wheat under drought. J. Plant Nutri. 26:1055-1063. https://doi.org/10.1081/PLN-120020075
  9. Graham, D. and B.R. Patterson. 1982. Responses of plants to low, nonfreezing temperatures: proteins, metabolism, and acclimation. Ann. Rev. Plant Physiol. 33:347-372. https://doi.org/10.1146/annurev.pp.33.060182.002023
  10. Kim, I.S., C.H. Zhang, H.M. Kang, and B. Mackay. 2008. Control of stretching cucumber and tomato plug seedlings using supplemental light. Hort. Environ. Biotechnol. 49:287-292.
  11. Liang, Y.C. 1999. Effect of silicon on enzyme activity, and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil. 209:217-224. https://doi.org/10.1023/A:1004526604913
  12. Liang, Y.C, C.G. Yang, and H.H Shi. 2001. Effect of silicon on growth and mineral composition of barley grow under toxic levels of aluminum. J. Plant Nutr. 24:229-243. https://doi.org/10.1081/PLN-100001384
  13. Liang, Y.C., J.W.C Wong, and L. Wei. 2005. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere. 58:475-483. https://doi.org/10.1016/j.chemosphere.2004.09.034
  14. Liang, Y.C., J. Zhu, Z.J. Li, G.X. Chu, Y.F. Dinh, J. Zhang, and W.C Sun. 2008. Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environmental and Experimental Botany. 64:286-294. https://doi.org/10.1016/j.envexpbot.2008.06.005
  15. Lu, G., and J. Cao. 2001. Effects of silicon on earliness and photosynthetic characteristics of melon. Acta Hort. Sciencia. 28:421-424.
  16. Ma, J.F., and E. Takahashi. 1990. Effect of silicon on the growth and phosphorus uptake of rice. Plant and Soil. 126:115-119. https://doi.org/10.1007/BF00041376
  17. Ma, J.F., Y. Miyake, and E. Takahashi. 2001. Silicon as a beneficial element for crop plants. In: Datnoff, L., Snyder, G., Korndorfer, G. (Eds.), Silicon in Agriculture. Elsevier Science, New York. 17-39.
  18. Romero-Aranda, M.R., O. Jurado, and J. Cuartero. 2006. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J. Plant Physiol. 163:847-855. https://doi.org/10.1016/j.jplph.2005.05.010
  19. Trenholm, L.E., L.E. Datnoff, and R.T. Nagata. 2004. Influence of silicon on drought and shade tolerance of St. Augustine grass. HortTechnology. 14:487-490.
  20. Singh, K., R. Singh, J.P Singh, Y. Singh, and K.K Singh. 2006. Effect of level and time of silicon application on growth, yield and its uptake by rice (Oryza sativa). Indian J. Agric. Sci. 76:410-413.
  21. Vu, N.T., S.H. Kim, S.Y. Kim, K.Y. Choi, and I.S. Kim. 2015a. Effect of silicate fertilizer on growth, physiology and abiotic stress tolerance of Chinese cabbage seedlings. Protected Hort. Plant Fac. 24:51-56. https://doi.org/10.12791/KSBEC.2015.24.2.051
  22. Vu, N.T., H.M. Kang, Y.S. Kim, K.Y. Choi, and I.S. Kim. 2015b. Growth, physiology and abiotic stress response to abscisic acid in tomato seedlings. Horticulture, Environment, and Biotechnology. 56:294-304. https://doi.org/10.1007/s13580-015-0106-1
  23. Zhao, M.G., X. Zhao, Y.X. Wu, and L.X. Zhang. 2007. Enhanced sensitivity to oxidative stress in an Arabidopsis nitric oxide synthase mutant. J. Plant Physiol. 164:737-745. https://doi.org/10.1016/j.jplph.2006.03.002