DOI QR코드

DOI QR Code

Effect of hygrothermal aging on GFRP composites in marine environment

  • Garg, Mohit (Department of Civil Engineering, University of Victoria) ;
  • Sharma, Shruti (Department of Civil Engineering, Thapar University) ;
  • Sharma, Sandeep (Department of Mechanical Engineering, Thapar University) ;
  • Mehta, Rajeev (Department of Chemical Engineering, Thapar University)
  • Received : 2016.12.30
  • Accepted : 2017.06.18
  • Published : 2017.09.20

Abstract

In the present work, the effect of hygrothermal aging on the glass fibre and epoxy matrix interface has been investigated by destructive and non-destructive techniques. The glass fiber reinforced polymer (GFRP) composite laminates were prepared using Vacuum Assisted Resin Infusion Molding (VARIM) technique and the specimens were immersed in simulated seawater, followed by quantitative measurement. Besides this, the tensile tests of GFRP specimens revealed a general decrease in the properties with increasing aging time. Also, exposed specimens were characterized by a non-destructive ultrasonic guided Lamb wave propagation technique. The experimental results demonstrate a correlation between the drop in ultrasonic voltage amplitude and fall in tensile strength with increasing time of immersion. Hence, the comparison of the transmitted guided wave signal of healthy vis-a-vis specimens subjected to different extents of hygrothermal aging facilitated performance evaluation of GFRP composites.

Keywords

References

  1. Abhilash, A.S., Joshi, S.P. and Mukherjee, A. (2011), "Micromechanics of diffusion-induced damage evolution in reinforced polymers", Compos. Sci. Technol., 71(3), 333-342. DOI: http://dx.doi.org/10.1016/j.compscitech.2010.11.027
  2. Adams, R.D. and Singh, M.M. (1995), "The effect of immersion in sea water on the dynamic properties of fibre-reinforced flexibilised epoxy composites", Compos. Struct., 31(2), 119127.
  3. Aggelis, D.G., Kleitsa, D. and Matikas, T.E. (2013), "Ultrasonic characterization of the fiber-matrix interfacial bond in aerospace composites", Hindawi Publishing Corp., pp. 1-8. DOI: http://dx.doi.org/10.1155/2013/154984
  4. Aktas, L., Hamidi, Y. and Altan, M.C. (2002a), "Effect of moisture absorption on mechanical properties of resin transfer molded composites - Part I: Absorption", J. Mater. Process. Manuf. Sci., 10(4), 239-254. https://doi.org/10.1177/1062065602010004005
  5. Aktas, L., Hamidi, Y. and Altan, M.C. (2002b), "Effect of moisture absorption on mechanical properties of resin transfer molded composites - Part II: Desorption", J. Mater. Process. Manuf. Sci., 10(4), 255-267. https://doi.org/10.1177/1062065602010004006
  6. Aldajah, S., Alawsi, G. and Rahmaan, S.A. (2009), "Impact of sea and tap water exposure on the durability of GFRP laminates", Mater. Des., 30(5), 1835-1840. DOI: http://dx.doi.org/10.1016/j.matdes.2008.07.044
  7. Arun, K.V., Basavarajappa, S., Chandrakumar, C. and Yadav, S.M. (2010), "Influence of secondary fillers on the behavior of translaminar failure in glass-epoxy composites", PolymerPlastics Technol. Eng., 49(5), 495-502. DOI: http://dx.doi.org/10.1080/03602550903413920
  8. Badcock, R.A. and Birt, E.A. (2000), "The use of 0-3 piezocomposite embedded Lamb wave sensors for detection of damage in advanced fibre composites", Smart Mater. Struct., 9(3), 291-297. https://doi.org/10.1088/0964-1726/9/3/307
  9. Bagheri, A. and Rizzo, P. (2016), "Guided ultrasonic wave testing of an immersed plate with hidden defects", Optical Eng., 55(1), 011003-011003. https://doi.org/10.1117/1.OE.55.1.011003
  10. Barkoula, N.M., Paipetis, A., Matikas, T., Vavouliotis, A., Karapappas, P. and Kostopoulos, V. (2009), "Environmental degradation of carbon nanotube-modified composite laminates: A study of electrical resistivity", Mech. Compos. Mater., 45(1), 21-32. https://doi.org/10.1007/s11029-009-9059-8
  11. Barraza, H.J., Aktas, L., Hamidi, Y.K., Long, J., O'Rear, E.A. and Altan, M.C. (2003), "Moisture absorption and wet-adhesion properties of Resin Transfer Molded (RTM) composites containing elastomer coated glass fibers", J. Adhes. Sci. Technol., 17(2), 217-233. DOI: http://dx.doi.org/10.1163/156856103762302014
  12. Bates, D., Smith, G., Lu, D. and Hewitt, J. (2000), "Rapid thermal non-destructive testing of aircraft components", Compos.: Part B, 31(3), 175-185. https://doi.org/10.1016/S1359-8368(00)00005-6
  13. Benammar, A., Drai, R. and Guessoum, A. (2008), "Detection of delamination defects in CFRP materials using ultrasonic signal processing", Ultrasonics, 48(8), 731-738. DOI: http://dx.doi.org/10.1016/j.ultras.2008.04.005
  14. Brondsted, P., Lilholt, H. and Lystrup, A. (2005), "Composite materials for wind power turbine blades", Ann. Rev. Mater. Res., 35, 505-538. https://doi.org/10.1146/annurev.matsci.35.100303.110641
  15. Castaings, M. and Hosten, B. (2001), "The propagation of guided waves in composite sandwich-like structures and their use for NDT", (D.O. Thompson and D.E. Chimenti Eds.), Review of Progress in Quantitative Nondestructive Evaluation, 20, 9991006.
  16. Chakrapani, S.K. and Dayal, V. (2014), "The interaction of Rayleigh waves with delaminations in composite laminates", J. Acoust. Soc. Am., 135(5), 2646-2653. https://doi.org/10.1121/1.4869684
  17. Chakraverty, A.P., Mohanty, U.K. and Ray, B.C. (2013), "Response of sea water immersed GFRP composite to thermal shock", J. Mater. Metallurg. Eng., 3(1), 34-41.
  18. Chen, A.S., Amond, D.P. and Harris, B. (2001), "In-situ monitoring in real time of fatigue induced damage growth in composite materials by acoustography", Compos. Sci. Technol., 61(16), 2437-2443. https://doi.org/10.1016/S0266-3538(01)00165-8
  19. Chia, C.C., Jeong, H.-M., Lee, J.-R. and Park, G. (2012), "Composite aircraft debonding visualization by laser ultrasonic scanning excitation and integrated piezoelectric sensing", Struct. Control Health Monitor., 19(7), 605-620. https://doi.org/10.1002/stc.1504
  20. Chifu, A.F. and Iroh, J.O. (1996), "Short term isothermal aging of epoxy resin-carbon fiber composites", Polym. Compos., 17(3), 408-413. https://doi.org/10.1002/pc.10628
  21. Chin, J.W., Nguyen, T. and Aouadi, K. (1997), "Effects of environmental exposure on fiber-reinforced plastic (FRP) materials used in construction", J. Compos. Technol. Res., 19(4), 205-213. https://doi.org/10.1520/CTR10120J
  22. Davies, P., Mazeas, F. and Casari, P. (2001), "Sea water aging of glass reinforced composites: Shear behaviour and damage modelling", J. Compos. Mater., 35(15), 1343-1372. https://doi.org/10.1106/MNBC-81UB-NF5H-P3ML
  23. Diamanti, K., Hodgkinson, J.M. and Soutis, C. (2002), "Damage detection of composite laminates using PZT generated Lamb waves", (D. Balageas Ed., Proceedings of the 1st European Workshop on Structural Health Monitoring, Paris, France, July.
  24. Ellyin, F. and Rohrbacher, C. (2000), "Effect of aqueous environment and temperature on glass-fiber epoxy resin composites", J. Reinf. Plast. Compos., 19(17), 1405-1427. DOI: http://10.1106/AAKT-65LE-R7LG-6XX1
  25. Garg, M., Sharma, S. and Mehta, R. (2015), "Pristine and amino functionalized carbon nanotubes reinforced glass fiber epoxy composites", Compos. Part A, 76, 92-101. DOI: http://dx.doi.org/10.1016/j.compositesa.2015.05.012
  26. Garg, M., Sharma, S., Sharma, S. and Mehta, R. (2016), "Noncontact damage monitoring technique for FRP laminates using guided waves", Smart Struct. Syst., Int. J., 17(5), 795-817. https://doi.org/10.12989/sss.2016.17.5.795
  27. Gellert, E.P. and Turkey, D.M. (1999), "Seawater immersion ageing of glass-fibre reinforced polymer laminates for marine applications", Compos.: Part A, 30(11), 1259-1265. DOI: http://dx.doi.org/10.1016/S1359-835X(99)00037-8
  28. Ghosh, T. and Kundu, T. (1998), "Efficient use of lamb modes for detecting defects in large plates", Ultrasonics, 36(7), 791-801. https://doi.org/10.1016/S0041-624X(98)00012-2
  29. Grondel, S., Paget, C., Delebarre, C., Assaad, J. and Levin, K. (2002), "Design of optimal cofiguration for generation A0 lamb mode in a composite plate using piezoceramic transducers", J. Acoust. Soc. Am., 112(1), 84-90. https://doi.org/10.1121/1.1481062
  30. Guadagnoa, L., Vertuccioa, L., Sorrentinoa, A., Raimondoa, M., Naddeoa, C. and Vittoria, V. (2009), "Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes", Carbon, 47(10), 2419-2430. DOI: http://dx.doi.org/10.1016/j.carbon.2009.04.035 Guo,
  31. D. and Kundu, T. (2001), "A new transducer holder mechanism for pipe inspection", J. Acoust. Soc. Am., 110(1), 303-309. DOI: http://asa.scitation.org/doi/abs/10.1121/1.1377289
  32. Guo, X., Huang, Y. and Cao, H. (2004), Hongkong Cailiao Xuebao, 24(4), 45.
  33. Hay, T.R., Wei, L. and Rose, J.L. (2003), "Rapid inspection of composite skin-honeycomb core strucutres with ultrasonic guided waves", J. Compos. Mater., 37(10), 929-939. https://doi.org/10.1177/0021998303037010005
  34. Hung, Y.Y., Luo, W.D., Lin, L. and Shang, H.M. (2000), "Evaluating the soundness of bonding using shearography", Compos. Struct., 50(4), 353-362. DOI: http://dx.doi.org/10.1016/S0263-8223(00)00109-4
  35. Iglesias, J.G., Benito, J.G., Aznar, A.J., Bravo, J. and Baselga, J. (2002), "Effect of glass fiber surface treatments on mechanical strength of epoxy based composite materials", J. Colloid Interf. Sci., 250(1), 251-260. https://doi.org/10.1006/jcis.2002.8332
  36. Inagaki, T., Ishii, T. and Iwamoto, T. (1999), "On the NDT and E for the diagnosis of defects using infrared thermography", NDT&E Int., 32(5), 247-257. DOI: http://dx.doi.org/10.1016/S0963-8695(98)00059-0
  37. Ishak, Z., Ariffin, A. and Senawi, R. (2001), "Effects of hygrothermal aging and a silane coupling agent on the tensile properties of injection molded short glass fiber reinforced poly(butylenes) terephthalte composites", Eur. Polym. J., 37(8), 1635-1647. DOI: http://dx.doi.org/10.1016/S0014-3057(01)00033-7
  38. Jiang, X., Kolstein, H. and Bijlaard, F.S.K. (2012), "Moisture diffusion and hygrothermal aging in pultruded fibre reinforced polymer composites of bridge decks", Mater. Des., 37, 304-312. https://doi.org/10.1016/j.matdes.2012.01.017
  39. Jiang, X., Kolstein, H. and Bijlaard, F.S.K. (2014), "Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: Moisture diffusion characteristics", Compos. Part A: Appl. Sci. Manuf., 57, 49-58. DOI: http://dx.doi.org/10.1016/j.compositesa.2013.11.002
  40. Kar, K.K., Sharma, S.D., Mohanty, A. and Kumar, P. (2008), "Short-term effect of distilled water, seawater and temperature on the crushed and interlaminar shear strength of fiber reinforced plastic composites made by the newly proposed rubber pressure molding technique", Polym. Compos., 29(6), 670-691. https://doi.org/10.1002/pc.20437
  41. Kessler, S.S., Spearing, S.M. and Scoutis, C. (2002), "Damage detection in composite materials using Lamb Wave methods", Smart Mater. Struct., 11(2), 269-278. DOI: http://dx.doi.org/10.1088/0964-1726/11/2/310
  42. Kim, Y.H., Kim, D.H., Han, J.H. and Kim, C.G. (2007), "Damage assessment in layered composites using spectral analysis and Lamb wave", Compos.: Part B, 38(7), 800-809. https://doi.org/10.1016/j.compositesb.2006.12.010
  43. Kootsookos, A. and Mouritz, A.P. (2004), "Seawater durability of glass- and carbon-polymer composites", Compos. Sci. Technol., 64(10), 1503-1511. DOI: http://dx.doi.org/10.1016/j.compscitech.2003.10.019
  44. Krawczak, P. and Pabiot, J. (1995), "Influence of the loading mode and the hydrothermal environment on the contribution of the interface to the cohesion of glass/epoxy composites", Polym. Compos., 3(4), 299-306.
  45. Lemistre, M. and Balageas, D.L. (2001), "Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing", Smart Mater. Struct., 10(3), 504511.
  46. Monkhouse, R.S.C., Wilcox, P.W., Lowe, M.J.S., Dalton, R.P. and Cawley, P. (2000), "The rapid monitoring of structures using interdigital Lamb wave transducers", Smart Mater. Struct., 9(3), 304-309. https://doi.org/10.1088/0964-1726/9/3/309
  47. Mourad, A.H.I., Abdel-Magid, B.M., El-Maaddawy, T. and Grami, M.E. (2010), "Effect of seawater and warm environment on glass/epoxy and glass/polyurethane composites", Appl. Compos. Mater., 17(5), 557-573. https://doi.org/10.1007/s10443-010-9143-1
  48. Mula, S., Bera, T., Ray, P.K. and Ray, B.C. (2006), "Effect of Hydrothermal ageing on mechanical behaviour of sub-zero weathered GFRP composites", J. Reinf. Plast. Compos., 25(6), 673-680. https://doi.org/10.1177/0731684406060247
  49. Mutlib, N.K., Baharom, S.B., El-Shafie, A. and Nuawi, M.Z. (2016), "Ultrasonic health monitoring in structural engineering: Buildings and bridges", Struct. Control Health Monit., 23(3), 409-422 https://doi.org/10.1002/stc.1800
  50. Na, W.B. and Kundu, T. (2002), "Underwater pipeline inspection using guided waves", J. Pressure Vessel Technol., 124(2), 196200.
  51. Netravali, A.N., Fornes, R.E., Gilbert, R.D. and Memory, J.D. (1985), "Effects of water sorption at different temperatures on permanent changes in an epoxy", J. Appl. Polym. Sci., 30(4), 1573-1578. https://doi.org/10.1002/app.1985.070300422
  52. Nogueira, P., Ramirex, C., Torres, A., Abad, M.J., Cano, J., Lopez, J., Lopez-Bueno, I. and Barral, L. (2001), "Effect of water sorption on the structure and mechanical properties of an epoxy resin system", J. Appl. Polym. Sci., 80(1), 71-80. https://doi.org/10.1002/1097-4628(20010404)80:1<71::AID-APP1077>3.0.CO;2-H
  53. Ochoa, O.O. (2006), Composite riser experience and design guidance; Offshore Technology Research Centre.
  54. Okafor, A.C., Otieno, A.W., Dutta, A. and Rao, VS. (2001), "Detection and characterization of high-velocity impact damage in advanced composite plates using multi-sensing techniques", Compos. Struct., 54(2), 289-297. https://doi.org/10.1016/S0263-8223(01)00100-3
  55. Padiyar, M.J. and Balasubramaniam, K. (2014), "Lamb-wavebased structural health monitoring technique for inaccessible regions in complex composite structures", Struct. Control Health Monitor., 21(5), 817-832. https://doi.org/10.1002/stc.1603
  56. Pieczonka, L., Aymerich, F., Brozek, G., Szwedo, M., Staszewski, W.J. and Uhl, T. (2013), "Modelling and numerical simulations of vibrothermography for impact damage detection in composites structures", Struct. Control Health Monit., 20(4), 626-638. DOI: http://dx.doi.org/10.1002/stc.1483
  57. Pistone, E. and Rizzo, P. (2015), "On the use of an array of ultrasonic immersion transducers for the nondestructive testing of immersed plates", Nondestruct. Test. Eval., 30(1), 26-38. https://doi.org/10.1080/10589759.2014.979817
  58. Pistone, E., Li, K. and Rizzo, P. (2013), "Noncontact monitoring of immersed plates by means of laser induced ultrasounds", Struct. Health Monitor., 12(5-6), 549-565. https://doi.org/10.1177/1475921713506767
  59. Prolongo, S.G., Gude, M.R. and Urena, A. (2012), "Water uptake of epoxy composites reinforced with carbon nanofillers", Compos.: Part A, 43(12), 2169-2175. DOI: http://dx.doi.org/10.1016/j.compositesa.2012.07.014
  60. Ratnam, C., Ben, B.S. and Ben, B.A. (2008), "Optimization of Lamb Wave propagation parameters for damage detection in composite materials", JP J. Solids Struct., 2, 69-82.
  61. Ray, B.C. (2005), "Effects of thermal and cryogenic conditionings on mechanical behavior of thermally shocked glass fiber-epoxy composites", J. Reinf. Plast. Compos., 24(7), 713-717. https://doi.org/10.1177/0731684405046081
  62. Rizzo, P., Han, J.G. and Ni, X.L. (2010), "Structural health monitoring of immersed structures by means of guided ultrasonic waves", J. Intell. Mater. Syst. Struct., 21(14), 13971407.
  63. Rizzo, P., Pistone, E. and Bagheri, A. (2015), "Guided ultrasonic waves for the NDT of immersed plates", Emerging Technologies in Non-Destructive Testing VI, Proceedings of the 6th International Conference on Emerging Technologies in NonDestructive Testing, Brussels, Belgium, May.
  64. Roy, S., Xu, X. and Park, S.J. (2000), "Anamalous moisture diffusion in viscoelastic polymers: Modeling and testing", Trans. ASME J. Appl. Mech., 67(2), 391-396. https://doi.org/10.1115/1.1304912
  65. Scudder, L.P., Hutchins, D.A. and Guo, N. (1996), "Laser generated guided waves in fiber-reinforced plates - Theory and experiment", IEEE Trans. Ultras. Ferro. Freq. Cont., 43(5), 870-871. https://doi.org/10.1109/58.535489
  66. Segovia, F., Salvador, M.D., Sahuquillo, O. and Vicente, A. (2007), "Effects of long-term exposure on E-glass composites material subjected to stress corrosion in a saline medium", J. Compos. Mater., 41(17), 2119-2128. https://doi.org/10.1177/0021998307074134
  67. Sharma, S. and Mukherjee, A. (2015a), "A non-contact technique for damage monitoring in submerged plates using guided waves", J. Test. Eval., 43(4), 1-16.
  68. Sharma, S. and Mukherjee, A. (2015b), "Ultrasonic guided waves for monitoring corrosion in submerged plates", Struct. Control Health Monit., 22(1), 19-35. DOI: http://dx.doi.org/10.1002/stc.1657
  69. Sharma, S. and Mukherjee, A. (2014), "Damage detection in submerged plates using ultrasonic guided waves", Sadhana, 39(5), 1009-1034. https://doi.org/10.1007/s12046-014-0255-4
  70. Sihn, S., Kim, R.Y., Kawabe, K. and Tsai, S.W. (2007), "Experimental studies of thin-ply laminated composites", Compos. Sci. Technol., 67(6), 996-1008. DOI: http://dx.doi.org/10.1016/j.compscitech.2006.06.008
  71. Smith, C.S. (1990), Design of Marine Structures in Composite Materials, Elsevier Applied Science, London, UK.
  72. Surathi, P. and Karbhari, V.M. (2006), "Hygrothermal effects on durability and moisture kinetics of fiber-reinforced polymer composites", Interim Report; California Department of Transportation, CA, USA.
  73. Toyama, N., Noda, J. and Okabe, T. (2003), "Quantitative damage detection in cross-ply laminates using Lamb wave method", Compos. Sci. Technol., 63(10), 1473-1479. DOI: http://dx.doi.org/10.1016/S0266-3538(03)00163-5
  74. Tsenoglou, C.J., Pavlidou, S. and Papaspyrides, C.D. (2006), "Evaluation of interfacial relaxation due to water absorption in fiber-reinforced polymer composites", Compos. Sci. Technol., 66(15), 2855-2864. https://doi.org/10.1016/j.compscitech.2006.02.022
  75. Wu, L., Murphy, K., Karbhari, V.M. and Zhang, J.S. (2002), "Short-term effects of sea water on E-glass/vinylester composites", J. Appl. Polym. Sci., 84(14), 2760-2767. DOI: http://dx.doi.org/10.1002/app.10571
  76. Yam, L.H., Yan, Y.J. and Jiang, J.S. (2003), "Vibration based damage detection for composite structures using wavelet transform and neural network identification", Compos. Struct., 60(4), 403-412. https://doi.org/10.1016/S0263-8223(03)00023-0
  77. Yang, Q., Karbhari, V.M. and Sikorsky, C. (2008a), "Durability study of three prefabricated carbon/epoxy composites and their respective epoxy adhesives used for bonding them to concrete", International SAMPE Symp. Exhib., Volume 52.
  78. Yang, Q., Xian, G. and Karbhari, V.M. (2008b), "Hygrothermal ageing of an epoxy adhesive used in FRP strengthening of concrete", J. Appl. Poly. Sci., 107(4), 2607-2617. https://doi.org/10.1002/app.27287
  79. Yeum, C.M., Sohn, H., Lim, H.J. and Ihn, J.B. (2014), "Referencefree delamination detection using Lamb waves", Struct. Control Health Monitor., 21(5), 675-684. DOI: http://dx.doi.org/10.1002/stc.1594
  80. Zafar, A., Bertocco, F., Thomsen, J.S. and Rauhe, J.C. (2012), "Investigation of the long term effects of moisture on carbon fiber and epoxy matrix composites", Compos. Sci. Technol., 72(6), 656-666. https://doi.org/10.1016/j.compscitech.2012.01.010
  81. Zulfli, N.M., Bakar, A.A. and Chow, W.S. (2013), "Mechanical and water absorption behaviors of carbon nanotube reinforced epoxy/glass fiber laminates", J. Reinf. Plast. Compos., 32(22), 1715-1721. https://doi.org/10.1177/0731684413501926

Cited by

  1. Development of FRC Materials with Recycled Glass Fibers Recovered from Industrial GFRP-Acrylic Waste vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/4149708