DOI QR코드

DOI QR Code

Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions

  • Jandaghian, Ali Akbar (Smart Structures and New Advanced Materials Laboratory, Department of Mechanical Engineering, University of Zanjan) ;
  • Rahmani, Omid (Smart Structures and New Advanced Materials Laboratory, Department of Mechanical Engineering, University of Zanjan)
  • 투고 : 2016.11.22
  • 심사 : 2017.06.16
  • 발행 : 2017.09.20

초록

In this study, free vibration of functionally graded (FG) micro/nanobeams based on nonlocal third-order shear deformation theory and under different boundary conditions is investigated by applying the differential quadrature method. Third-order shear deformation theory can consider the both small-scale effects and quadratic variation of shear strain and hence shear stress along the FG nanobeam thickness. The governing equations are obtained by using the Hamilton's principle, based on third-order shear deformation beam theory. The differential quadrature (DQ) method is used to discretize the model and attain the natural frequencies and mode shapes. The properties of FG micro/nanobeam are assumed to be chanfged along the thickness direction based on the simple power law distribution. The effects of various parameters such as the nonlocal parameter, gradient index, boundary conditions and mode number on the vibration characteristics of FG micro/nanobeams are discussed in detail.

키워드

참고문헌

  1. Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
  2. Asghari, M., Kahrobaiyan, M. and Ahmadian, M. (2010), "A nonlinear Timoshenko beam formulation based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1749-1761. https://doi.org/10.1016/j.ijengsci.2010.09.025
  3. Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-dimens. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
  4. Batra, R., Porfiri, M. and Spinello, D. (2008), "Vibrations of narrow microbeams predeformed by an electric field", J. Sound Vib., 309(3), 600-612. https://doi.org/10.1016/j.jsv.2007.07.030
  5. Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  6. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227249.
  7. Carbonari, R.C., Silva, E.C. and Paulino, G.H. (2009), "Multi-actuated functionally graded piezoelectric micro-tools design: A multiphysics topology optimization approach", Int. J. Methods Eng., 77(3), 301-336. https://doi.org/10.1002/nme.2403
  8. Eltaher, M., Emam, S.A. and Mahmoud, F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Computat., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
  9. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  10. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer.
  11. Eringen, A.C. (2006), "Nonlocal continuum mechanics based on distributions", Int. J. Eng. Sci., 44(3), 141-147. https://doi.org/10.1016/j.ijengsci.2005.11.002
  12. Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  13. Hosseini, S.A.H. and Rahmani, O. (2016a), "Exact solution for axial and transverse dynamic response of functionally graded nanobeam under moving constant load based on nonlocal elasticity theory", Meccanica, 52(6), 1441-1457.
  14. Hosseini, S. and Rahmani, O. (2016b), "Surface effects on buckling of double nanobeam system based on nonlocal Timoshenko model", Int. J. Struct. Stabil. Dyn., 16(10), 1550077. https://doi.org/10.1142/S0219455415500777
  15. Hosseini, S.A.H. and Rahmani, O. (2016c), "Thermomechanical vibration of curved functionally graded nanobeam based on nonlocal elasticity", J. Thermal Stress., 39(10), 1252-1267. https://doi.org/10.1080/01495739.2016.1215731
  16. Hosseini-Hashemi, S., Zare, M. and Nazemnezhad, R. (2013), "An exact analytical approach for free vibration of Mindlin rectangular nano-plates via nonlocal elasticity", Compos. Struct., 100, 290-299. https://doi.org/10.1016/j.compstruct.2012.11.035
  17. Hung, E.S. and Senturia, S.D. (1999), "Extending the travel range of analog-tuned electrostatic actuators", Microelectromech. Syst. J., 8(4), 497-505. https://doi.org/10.1109/84.809065
  18. Jandaghian, A. and Rahmani, O. (2015), "An Analytical Solution for Free Vibration of Piezoelectric Nanobeams Based on a nonlocal elasticity theory", J. Mech., 32(2), 143-151.
  19. Jandaghian, A. and Rahmani, O. (2016b), "Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation", Smart Mater. Struct., 25(3), 035023. https://doi.org/10.1088/0964-1726/25/3/035023
  20. Janghorban, M. and Zare, A. (2011), "Free vibration analysis of functionally graded carbon nanotubes with variable thickness by differential quadrature method", Physica E: Low-dimens. Syst. Nanostruct., 43(9), 1602-1604. https://doi.org/10.1016/j.physe.2011.05.002
  21. Jia, X., Yang, J., Kitipornchai, S. and Lim, C. (2011), "Forced vibration of electrically actuated FGM micro-switches", Procedia Eng., 14, 280-287. https://doi.org/10.1016/j.proeng.2011.07.034
  22. Jia, X., Yang, J., Kitipornchai, S. and Lim, C.W. (2012), "Pull-in instability and free vibration of electrically actuated poly-SiGe graded micro-beams with a curved ground electrode", Appl. Math. Model., 36(5), 1875-1884. https://doi.org/10.1016/j.apm.2011.07.080
  23. Kapuria, S., Bhattacharyya, M. and Kumar, A.N. (2008), "Bending and free vibration response of layered functionally graded beams: A theoretical model and its experimental validation", Compos. Struct., 82(3), 390-402. https://doi.org/10.1016/j.compstruct.2007.01.019
  24. Ke, L.-L. and Wang, Y.-S. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008
  25. Ke, L.-L., Wang, Y.-S., Yang, J. and Kitipornchai, S. (2012), "Nonlinear free vibration of size-dependent functionally graded microbeams", Int. J. Eng. Sci., 50(1), 256-267. https://doi.org/10.1016/j.ijengsci.2010.12.008
  26. Koizumi, M. (1993), The Concept of FGM, Ceramic Transactions. Functionally Gradient Materials, 34, 3-10.
  27. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
  28. Lun, F., Zhang, P., Gao, F. and Jia, H. (2006), "Design and fabrication of micro-optomechanical vibration sensor", Microfab. Technol., 120(1), 61-64.
  29. Mahi, A., Bedia, E.A.A., Tounsi, A. and Mechab, I. (2010), "An analytical method for temperature-dependent free vibration analysis of functionally graded beams with general boundary conditions", Compos. Struct., 92(8), 1877-1887. https://doi.org/10.1016/j.compstruct.2010.01.010
  30. Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology. 11(3), p. 139. https://doi.org/10.1088/0957-4484/11/3/301
  31. Moghimi Zand, M. and Ahmadian, M. (2009), "Vibrational analysis of electrostatically actuated microstructures considering nonlinear effects", Commun. Nonlinear Sci. Numer. Simul., 14(4), 1664-1678. https://doi.org/10.1016/j.cnsns.2008.05.009
  32. Moser, Y. and Gijs, M.A. (2007), "Miniaturized flexible temperature sensor", Microelectromech. Syst. J., 16(6), 1349-1354. https://doi.org/10.1109/JMEMS.2007.908437
  33. Murmu, T. and Pradhan, S. (2009), "Vibration analysis of nanoplates under uniaxial prestressed conditions via nonlocal elasticity", J. Appl. Phys., 106(10), 104301. https://doi.org/10.1063/1.3233914
  34. Nguyen, N.-T., Kim, N.-I. and Lee, J. (2014), "Analytical solutions for bending of transversely or axially FG nonlocal beams", Steel Compos. Struct., Int. J., 17(5), 641-665. https://doi.org/10.12989/scs.2014.17.5.641
  35. Pei, J., Tian, F. and Thundat, T. (2004), "Glucose biosensor based on the microcantilever", Anal. Chem., 76(2), 292-297. https://doi.org/10.1021/ac035048k
  36. Pradhan, S. and Phadikar, J. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325(1), 206-223. https://doi.org/10.1016/j.jsv.2009.03.007
  37. Praveen, G. and Reddy, J. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", Int. J. Solids Struct., 35(33), 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9
  38. Rahmani, O. and Jandaghian, A. (2015), "Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory", Appl. Phys. A, 119(3), 1019-1032. https://doi.org/10.1007/s00339-015-9061-z
  39. Rahmani, O. and Noroozi Moghaddam, M.H. (2014), "On the vibrational behavior of piezoelectric nano-beams", Adv. Mater. Res., 829, 790-794.
  40. Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 5570.
  41. Rahmani, O., Asemani, S. and Hosseini, S. (2015), "Study the Buckling of Functionally Graded Nanobeams in Elastic Medium with Surface Effects Based on a Nonlocal Theory", J. Computat. Theor. Nanosci., 12(10), 3162-3170. https://doi.org/10.1166/jctn.2015.4095
  42. Rahmani, O., Hosseini, S. and Parhizkari, M. (2016a), "Buckling of double functionally-graded nanobeam system under axial load based on nonlocal theory: An analytical approach", Microsyst. Technol., 23(7), 2739-2751.
  43. Rahmani, O., Hosseini, S.A.H. and Hayati, H. (2016b), "Frequency analysis of curved nano-sandwich structure based on a nonlocal model", Modern Phys. Lett. B., 30(10), 1650136.
  44. Rahmani, O., Niaei, A.M., Hosseini, S. and Shojaei, M. (2017a), "In-plane vibration of FG micro/nano-mass sensor based on nonlocal theory under various thermal loading via differential transformation method", Superlattices Microstruct., 101, 23-39. https://doi.org/10.1016/j.spmi.2016.11.018
  45. Rahmani, O., Norouzi, S., Golmohammadi, H. and Hosseini, S. (2017b), "Dynamic response of a double single-walled carbon nanotube under a moving nanoparticle based on modified nonlocal elasticity theory considering surface effects", Mech. Adv. Mater. Struct., 1-18.
  46. Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons.
  47. Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  48. Refaeinejad, V., Rahmani, O. and Hosseini, S. (2017), "Evaluation of nonlocal higher order shear deformation models for the vibrational analysis of functionally graded nanostructures", Mech. Adv. Mater. Struct., 1-8.
  49. Shu, C. (2000), Differential Quadrature and its Application in Engineering, Springer Science & Business Media.
  50. Simsek, M. and Yurtcu, H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
  51. Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015
  52. Uymaz, B. (2013), "Forced vibration analysis of functionally graded beams using nonlocal elasticity", Compos. Struct., 105, 227-239. https://doi.org/10.1016/j.compstruct.2013.05.006
  53. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693