DOI QR코드

DOI QR Code

Fatigue analysis of crumble rubber concrete-steel composite beams based on XFEM

  • Han, Qing-Hua (School of Civil Engineering, Tianjin University) ;
  • Yang, Guang (School of Civil Engineering, Tianjin University) ;
  • Xu, Jie (School of Civil Engineering, Tianjin University) ;
  • Wang, Yi-Hong (School of Civil Engineering, Tianjin University)
  • 투고 : 2017.01.20
  • 심사 : 2017.06.08
  • 발행 : 2017.09.20

초록

The fatigue fracture of studs is the main reason for failure of composite beams based on massive engineering practices. Hence, studying the laws of cracks initiation and propagation are of great directive significance. eXtended Finite Element Method (XFEM) is an effective method in solving moving discontinuous problems in recent years. This paper extends our recent work on the fatigue damage analysis of stud shear connectors in the steel and crumble rubber concrete (RRFC) composite beams based on XFEM. The process of crack initiation to failure of the stud is simulated and an effective calculation criteria for the fatigue life of the composite beams is put forward. After the reliability of the numerical analysis is verified based on tests results, the extensive parametric study is conducted concerning effects of different rubber contents, shear connection degrees and the stress amplitudes. Results show that with the increasing rubber contents and shear connection degrees, the fatigue lives of composite beams increase obviously. Furthermore, the relationship between the fatigue life of the stud at the edge of the shear span and the whole composite beams is studied. Finally, the S-N curves of the single stud and the whole composite beams are put forward based on XFEM.

키워드

과제정보

연구 과제 주관 기관 : National Science Foundation of China

참고문헌

  1. AASHTO LRFD (2004), Bridge design specifications; (3rd Ed.), American Association of State Highway and Transportation Officials; Washington DC, USA.
  2. Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Meth. Eng., 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  3. Daux, C., Moes, N., Dolbow, J., Sukumar, N. and Belytschko, T. (2000), "Arbitrary branched and intersecting cracks with the extended finite element method", Int. J. Numer. Meth. Eng., 48(12), 1741-1760. https://doi.org/10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
  4. Dolbow, J., Moes, N. and Belytschko, T. (2000), "Modeling fracture in mindlin-reissner plates with the extended finite element method", Int. J. Solids Struct., 37(48-50), 7161-7183. https://doi.org/10.1016/S0020-7683(00)00194-3
  5. Dolbow, J., Moes, N. and Belytschko, T. (2001), "An extended finite element method for modeling crack growth with frictional contact", Comput. Method. Appl. M., 190(51-52), 6825-6846. https://doi.org/10.1016/S0045-7825(01)00260-2
  6. Eurocode 4 (1997), Design of Composite Steel and Concrete Structures, part 2: bridges; Eurocode Committee for Standardization; Brussels, Belgium.
  7. Han, Q.H., Wang, Y.H., Xu, J. and Xing Y. (2015), "Static Behavior of stud shear connectors in elastic concrete-steel composite beams", J. Constr. Steel Res., 113, 115-126. https://doi.org/10.1016/j.jcsr.2015.06.006
  8. Han, Q.H., Wang, Y.H., Xu, J. and Xing Y. (2016), "Fatigue behavior of stud shear connectors in steel and crumble rubber concrete composite beams", Steel Compos. Struct., Int. J., 22(2), 353-368. https://doi.org/10.12989/scs.2016.22.2.353
  9. Hanswille, G., Porsch, M. and Ustundag, C. (2007), "Resistance of headed studs subjected to fatigue loading, Part I: Experimental study", J. Constr. Steel Res., 63(4), 475-484. https://doi.org/10.1016/j.jcsr.2006.06.035
  10. Harnatkiewicz, P., Kopczynski, A., Kozuch, M., Lorenc, W. and Rowinski, S. (2011), "Research on fatigue cracks in composite dowel shear connection", Eng. Fail. Anal., 18(5), 1279-1294. https://doi.org/10.1016/j.engfailanal.2011.03.016
  11. Hou, Z., Xia, H., Zhang, Y.L., Hou, Z., Xia, H. and Zhang, Y.L. (2012), "Dynamic analysis and shear connector damage identification of steel-concrete composite beams", Steel Compos. Struct., Int. J., 13(4), 327-341. https://doi.org/10.12989/scs.2012.13.4.327
  12. Ju, X. and Zeng, Z. (2015), "Study on uplift performance of stud connector in steel-concrete composite structures", Steel Compos. Struct., Int. J., 18(5), 1279-1290. https://doi.org/10.12989/scs.2015.18.5.1279
  13. Liu, K. and Roeck, G.D. (2009), "Parametric study and fatiguelife-cycle design of shear studs in composite bridges", J. Constr. Steel Res., 65(5), 1105-1111. https://doi.org/10.1016/j.jcsr.2008.10.011
  14. Melenk, J.M. and Babuska, I. (1995), "The partition of unity finite element method: Basic theory and applications", Comput. Method. Appl. M., 139(1-4), 289-314.
  15. Ministry of Construction of China (2003), GB50017-2003, Code for design of steel structures; China Planning Press, Beijing, China.
  16. Mirza, O. and Uy, B. (2010), "Finite element model for the longterm behavior of composite steel-concrete push tests", Steel Compos. Struct., Int. J., 10(1), 45-67. https://doi.org/10.12989/scs.2010.10.1.045
  17. Moes, N. and Belytschko, T. (2002), "Extended finite element method for cohesive crack growth", Eng. Fract. Mech., 69(7), 813-833. https://doi.org/10.1016/S0013-7944(01)00128-X
  18. Mose, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  19. Nie, J.G. (2005), Steel-Concrete Composite Beams, China Science Press, Beijing, China.
  20. Nie, J.G. and Wang, Y.H. (2012), "Research status on fatigue behavior of steel-concrete composite beams", Eng. Mech., 29(6), 1-11.
  21. Pais, M.J. (2011), "Variable amplitude fatigue analysis using surrogate models and exact XFEM reanalysis", Ph.D. Dissertation; University of Florida, FL, USA.
  22. Pang, J.H.L., Tsang, K.S. and Hoh, H.J. (2016), "3D stress intensity factors for weld toe semi-elliptical surface cracks using XFEM", Mar. Struct., 48, 1-14. https://doi.org/10.1016/j.marstruc.2016.04.001
  23. Ramazani, A., Abbasi, M., Kazemiabnavi, S., Schmauder, S., Larson, R. and Prahl, U. (2016), "Development and application of a microstructure-based approach to characterize and model failure initiation in DP steels using XFEM", Mater. Sci. Eng.: A, 660, 181-194. https://doi.org/10.1016/j.msea.2016.02.090
  24. Papastergiou, D. and Lebet, J. (2014), "Investigation of a new steel-concrete connection for composite bridges", Steel Compos. Struct., Int. J., 17(9), 497-501. https://doi.org/10.12989/scs.2014.17.4.497
  25. Ru, Z.L., Zhu, C.R., Zhang, Y.L. and Zhao, H.B. (2011), "Study of fracture problem with extended finite element method", Rock Soil Mech., 32(7), 2171-2176.
  26. Sohel, K.M.A., Liew, J.Y.R., Yan, J.B., Zhang, M.H. and Chia, K.S. (2012), "Behavior of steel-concrete-steel sandwich structures with lightweight cement composite and novel shear connectors", Compos. Struct., 94(94), 3500-3509. https://doi.org/10.1016/j.compstruct.2012.05.023
  27. Sukumar, N., Chopp, D.L., Moes, N. and Belytschko, T. (2000), "Modeling holes and inclusions by level sets in the extended finite-element method", Comput. Method. Appl. M., 190(46-47), 6183-6200.
  28. Wang, Y.H., Nie, J.G. and Li, J.J. (2014), "Study on fatigue property of steel-concrete composite beams and studs", J. Constr. Steel Res., 94(94), 1-10. https://doi.org/10.1016/j.jcsr.2013.11.004
  29. Xing, Y., Han, Q., Xu, J., Guo, Q. and Wang, Y. (2016), "Experimental and numerical study on static behavior of elastic concrete-steel composite beams", J. Constr. Steel Res., 123, 7992.
  30. Yang, L.H. and Zhu, H. (2010), "Strengths and flexural strain of CRC Specimens at low temperature", Constr. Build. Mater., 25(2), 906-910. https://doi.org/10.1016/j.conbuildmat.2010.06.094

피인용 문헌

  1. Effect of crumb rubber on compressive behaviour of CRCFST stub columns vol.25, pp.3, 2017, https://doi.org/10.12989/cac.2020.25.3.267
  2. Experimental investigation on thermal behavior, sound absorption, and flammability of natural fibre polymer composites vol.76, pp.5, 2017, https://doi.org/10.12989/sem.2020.76.5.613