DOI QR코드

DOI QR Code

Functional evaluation of marine micro-algae Amphidinium carterae extract

해양 미세조류 Amphidinium carterae 추출물의 기능성 평가

  • Kim, Hae-Mi (Research Center for Industrial Development of BioFood Materials, Chonbuk National University) ;
  • Oh, Hyeonhwa (Department of Food Science and Technology, Chonbuk National University) ;
  • Jeong, Jong Hoon (Institute of Jinan Red Ginseng) ;
  • Lee, Sang-Cheon (Imsil research Institute of Cheese Science and Food) ;
  • Moon, Hye-Jung (Imsil research Institute of Cheese Science and Food) ;
  • Jeong, Yong-Seob (Department of Food Science and Technology, Chonbuk National University)
  • 김해미 (전북대학교 바이오식품소재개발 및 연구센터) ;
  • 오현화 (전북대학교 식품공학과) ;
  • 정종훈 (진안홍삼연구소) ;
  • 이상천 ((재)임실치즈 & 식품연구소) ;
  • 문혜정 ((재)임실치즈 & 식품연구소) ;
  • 정용섭 (전북대학교 식품공학과)
  • Received : 2017.07.03
  • Accepted : 2017.08.22
  • Published : 2017.08.30

Abstract

In this study, the antimicrobial, antioxidant activities and ${\alpha}$-glucosidase inhibitory activities of Amphidinium carterae ethanol extract (AE) was evaluated for using as a functional food ingredient. Chlorella ethanol extract (CE) was used to the comparison as a control. Anticancer activities of the AE and CE were analyzed by HepG2 and HT-29 human cancer cell. The AE showed antimicrobial activities for all tested bacterial strains. Whereas, CE showed antimicrobial activities for several tested bacterial strains only. The CE showed higher total phenolics contents, DPPH and ABTS radical-scavenging activities (47.36 mg/g, 22.42% and 28.58%, respectively) than those of AE (8.88 mg/g, 20.16% and 17.69%, respectively). AE showed anti-diabetic effect on ${\alpha}$-glucosidase inhibitory activity with dose-dependantly manner. The cell viability of AE ($125{\mu}g/mL$) on HepG2 and HT-29 human cancer cells were 38.12% and 11.27%, respectively. It was demonstrated that ethanol was efficient solvent for extracting functional components from A. carterae. These results indicated that AE can be described as a good candidate for using as a functional food ingredient.

본 연구에서는 해양미세조류 A. carterae의 기능성 평가를 위해 에탄올 추출을 하였고, 기존의 건강기능성식품인 클로렐라를 에탄올 추출하여 기능성을 비교하였다. 클로렐라 에탄올 추출물(CE)과 A. carterae 에탄올 추출물(AE)의 총페놀성 화합물은 각각 47.39 mg/g과 8.88 mg/g 으로 CE가 5.33배 높았으나, DPPH 라디컬소거능은 22.42%와 20.16%로 비슷한 수준이었다. 반면에 CE와 AE의 ABTS 라디컬 소거능은 각각 28.58%와 17.69%로 CE가 높아 CE의 항산화능은 페놀성 화합물의 효과로 판단된다. AE(10 mg/mL)의 항균활성은 그람음성균 6종과 그람양성균 10종에서 확인하였다. 그리고 CE(10 mg/mL)의 항균활성은 그람음성균 3종과 그람양성균 3종에서 확인되었다. ${\alpha}$-glucosidase의 억제활성은 AE($500{\mu}g/mL$)에서 82.07%이었고, CE는 효소활성을 촉진하는 것으로 나타났다. 암세포 생장억제활성은 $125{\mu}g/mL$ 농도의 AE를 첨가했을 때, HepG2와 HT-29의 생존율이 각각 38%와 11.27%이었다. $31.25-125{\mu}g/mL$의 농도범위에서 CE 첨가가 HepG2와 HT-29의 생장을 촉진하는 것으로 확인되었다. 이와 같은 결과를 종합하면, A. carterae 에탄올 추출물은 페놀성 화합물 이외의 항산화 물질을 보유하고, 항균활성, 항당뇨효과와 암세포 억제활성이 우수한 기능성 물질을 함유하고 있는 것으로 판단되어 기능성 소재로써의 활용가치가 높을 것으로 판단된다.

Keywords

References

  1. Oh HM, Choi AR, Mheen TI (2003) High-value Materials from Microalge. Kor J Microbiol Biotechnol, 31, 95-102
  2. Kim SK, Back HC, Byun HG, Kang OJ, Kim JB (2001) Biochemical composition and antioxidantive activity of marine microalgae. J Korean Fish Soc, 34, 260-267
  3. Batista AP, Gouveia L, Bandarra NM, Franco JM, Raymundo A (2013) Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal reaearch, 2, 164-173 https://doi.org/10.1016/j.algal.2013.01.004
  4. Jelinek L, Prochazkova G, Quintelas C, Beldikova E, Branyik, T (2015) Chlorella vulgaris biomass enriched by biosorption of polyphenols. Algal Reserch, 10, 1-7 https://doi.org/10.1016/j.algal.2015.04.006
  5. Samarakoon KW, Ko JY, Shah MMR, Lee JH, Kang MC, Nam WO, Lee JB, Jeon YJ (2013) In vitro studies of anti-inflammatory and anticancer activities of organic solvent extracts from cultured marine microalgae. Algae, 28, 111-119 https://doi.org/10.4490/algae.2013.28.1.111
  6. Kellmann R, stuken A, Orr RJ, Svendsen HM, Jakobsen KS (2010) Biosynthesis and molecular genetics of polyketides in marine dinoflagellates. Mar Drugs, 8, 1011-1048 https://doi.org/10.3390/md8041011
  7. Murray SA, Garby T, Hoppenrath M, Neilan BA (2012) Genetic diversity, morphological uniformity and polyketide production in dinoflagellates (Amphidniium, Dinoflagellata). PLoS One, 7, 1-14
  8. Meng YH, Van Wagoner RM, Misner I, Tomas C, Wright JLC (2010) Structure and biosynthesis of amphidinol 17, a hemolytic compound from Amphidinium carterae. J Nat Prod, 73, 409-415 https://doi.org/10.1021/np900616q
  9. Nuzzo G, Cutignano A, Sardo A, Fontana A (2014) Antifungal amphidinol 18 and its 7-sulfate derivative from the marine dinoflagellate Amphidinium carterae. J Nat Prod, 77, 1524-1527 https://doi.org/10.1021/np500275x
  10. Echigoya R, Rhodes L, Oshima Y, Satake M (2005) The structures of five new antifungal and hemolytic amphidinol analogs from Amphidinium carterae collected in New Zealand. Harmful Algae, 4, 383-389 https://doi.org/10.1016/j.hal.2004.07.004
  11. Huang SJ, Kuo CM, Lin YC, Chen YM, Lu CK (2009) Carteraol E, a potent polyhydrxyl ichthyotoxin from the dinoflagellate Amphidinium carterae. Tetrahedron Lett, 50, 2512-2515 https://doi.org/10.1016/j.tetlet.2009.03.065
  12. Guzman S, Gato A, Lamela M, Freire-Garabal M, Calleja JM (2003) Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother Res, 17, 665-670 https://doi.org/10.1002/ptr.1227
  13. Lee DH, Hong JH (2015) Antioxidant activities of chlorella extracts and physicochemical characteristics of spray-dried chlorella powders. Korean J Food Preserv, 22, 591-597 https://doi.org/10.11002/kjfp.2015.22.4.591
  14. Son MK (2016) Current Status of Raw Material Function for Food Function. Ministry of Food and Drug Safety, Korea, p 1-115
  15. Anesini C, Ferraro GE, Filip R (2008) Total polyphenol content and antioxidant capacity of commercially available tea (Camellia sinensis) in Argentina. J Agric Food Chem, 56, 9225-9229 https://doi.org/10.1021/jf8022782
  16. Kano M, Takayanagi T, Harada K, Makino K, Ishikawa F (2005) Antioxidative activity of anthocyanins from purple sweet potato, Ipomoera batatas cultivar Ayamurasaki. Biosci Biotechnol Biochem, 69, 979-988 https://doi.org/10.1271/bbb.69.979
  17. Li X (2012) Improved pyrogallol autoxidation method: a reliable and cheap superoxide-scavenging assay suitable for all antioxidants. J Agric Food Chem, 60, 6418-6424 https://doi.org/10.1021/jf204970r
  18. Lim CS, Li CY, Kim YM, Lee WY, Rhee HI, (2005) The inhibitory effect of corus walteri extract against ${\alpha}$-amylase. J Appl Biol Chem, 48, 103-108
  19. Kim SK, Baek HC, Byun HG, Kang OJ, Kim JB (2001) Biochemical composition and antioxidative activity of marine microalgae. J Korean Fish Soc, 34, 260-267
  20. Kumar SS, Devasagayam TPA, Bhushan B, Verma NC (2001) Scavenging of reactive oxygen species by chlorophyllin: an ESR study. Free Radic Res, 35, 563-574 https://doi.org/10.1080/10715760100301571
  21. Takaichi S (2011) Caroenoids in algae: distributions, biosynthesis and functions. Mar Drugs, 9, 1101-1118 https://doi.org/10.3390/md9061101
  22. Pagliara P, Caroppo C (2012) Toxicity assessment of Amphidinium carterae, Coolia cfr. monotis and Ostreopsis cfr. ovata (Dinophyta) isolated from the northern Ionian Sea (Mediterranean Sea). Toxicon, 60, 1203-1214 https://doi.org/10.1016/j.toxicon.2012.08.005
  23. Lee SH, Jeon YJ (2013) Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia, 86, 129-136 https://doi.org/10.1016/j.fitote.2013.02.013
  24. Miyashita K, Maeda H, Okada T, Abe M, Hosokawa M (2010) Anti-obesity and anti-diabetic effects of allenic carotenoid, fucoxanthin. Agro FOOD Industry Hi Tech, 21, 24-27
  25. Noda K, Ohno N, Tanaka K, Kamiya N, Okuda M, Yadomae T, Nomoto K, Shoyama Y (1996) A water-soluble antitumor glycoprotein from Chlorella vulgaris. Planta Med, 62, 423-426 https://doi.org/10.1055/s-2006-957931
  26. Shah MR, Samarakoon KW, An SJ, Jeon UJ, Lee JB (2016) Growth characteristeics of three benthic dinoflagellates in mass culture and their antioxidant protperties. J Fish Aquat Sci, 11, 268-277 https://doi.org/10.3923/jfas.2016.268.277

Cited by

  1. Biotechnological Potential of Korean Marine Microalgal Strains and Its Future Prospectives vol.41, pp.4, 2017, https://doi.org/10.4217/opr.2019.41.4.289
  2. Euglena gracilis 추출물의 면역조절 및 생리활성 분석 vol.31, pp.2, 2017, https://doi.org/10.5352/jls.2021.31.2.183