DOI QR코드

DOI QR Code

Enhanced Antioxidant Activity of Berry Juice through Acetic Acid Bacteria Fermentation

초산균 발효에 의한 베리 농축액의 항산화 활성 증진 효과

  • Park, Joong-Hee (Department of Bioengineering and Technology, Kangwon National University) ;
  • Kwon, Hun-Joo (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Kwon, Deok-Ho (Department of Bioengineering and Technology, Kangwon National University) ;
  • Park, Jae-Bum (Department of Bioengineering and Technology, Kangwon National University) ;
  • Nam, Hee-Sop (Research & Development Center, Dongwon F&B) ;
  • Lee, Do Yup (Department of Bio and Fermentation Convergence Technology, Kookmin University) ;
  • Kim, Myoung-Dong (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Ha, Suk-Jin (Department of Bioengineering and Technology, Kangwon National University)
  • Received : 2017.08.10
  • Accepted : 2017.09.23
  • Published : 2017.09.30

Abstract

Antioxidant activities of blackberry juice and aronia juice were enhanced when fermentation was performed by acetic acid bacteria. Acetobacter pasteurianus exhibited 19.84% improvement of antioxidant activity (from $198.12{\pm}2.03$ to $237.42{\pm}7.32{\mu}mol\;TE/g$) after 12 h fermentation of blackberry juice among four acetic acid bacteria. And A. pasteurianus sub sp. Pasteurianus exhibited 9.62% improvement of antioxidant activity (from $204.25{\pm}3.98$ to $223.89{\pm}5.52{\mu}mol\;TE/g$) after 12 h fermentation of aronia juice. Metabolites of blackberry juice were analyzed to investigate the enhancement of antioxidant activity before and after fermentation. As results, Quercetin 7-(rhamnosylglucoside), nicotinic acid adenine dinucleotide, and quercetin 3-O-(6"-acetyl-glucoside) were significantly increased after fermentation by A. pasteurianus.

Keywords

Acknowledgement

Supported by : Korean Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET)

References

  1. Park, H. M., S. J. Yang, E. J. Kang, D. H. Lee, D. I. Kim, and J. H. Hong (2012) Quality characteristics and granule manufacture of mulberry and blueberry fruit extracts. Korean J. Food Cook. Sci. 28: 375-382. https://doi.org/10.9724/kfcs.2012.28.4.375
  2. Droge, W. (2002) Free radicals in the physiological control of cell function. Physiol. Rev. 82: 47-95. https://doi.org/10.1152/physrev.00018.2001
  3. Park, S. H., H. S. Hwang, and J. H. Han (2004) Development of drink from composition with medicinal plants and evaluation of its physiological function. Korean J. Nutr. 37: 364-372.
  4. Rocha, A., L. Wang, M. Penichet, and M. Martins-Green (2012) Pomegranate juice and specific components inhibit cell and molecular processes critical for metastasis of breast cancer. Breast Cancer Res. Treat. 136: 647-658. https://doi.org/10.1007/s10549-012-2264-5
  5. Halliwell, B., R. Aeschbach, J. Löliger, and O. Aruoma (1995) The characterization of antioxidants. Food Chem. Toxicol. 33: 601-617. https://doi.org/10.1016/0278-6915(95)00024-V
  6. Lin, M. Y. and C. L. Yen (1999) Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem. 47: 1460-1466. https://doi.org/10.1021/jf981149l
  7. Castro, L. and B. A. Freeman (2001) Reactive oxygen species in human health and disease. Nutrition 17: 161-165. https://doi.org/10.1016/S0899-9007(00)00570-0
  8. Kim, H. Y., K. S. Woo, I. G. Hwang, Y. R. Lee, and H. S. Jeong (2008) Effects of heat treatments on the antioxidant activities of fruits and vegetables. Korean J. Food Sci. Technol. 40: 166-170.
  9. Velioglu, Y., G. Mazza, L. Gao, and B. Oomah (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 46: 4113-4117. https://doi.org/10.1021/jf9801973
  10. Perez-Jimenez, J., V. Neveu, F. Vos, and A. Scalbert (2010) Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: an application of the phenol-explorer database. J. Agric. Food Chem. 58: 4959-4969. https://doi.org/10.1021/jf100128b
  11. Jang, M. H. and M. D. Kim (2011) $\beta$-1,4-xylosidase activity of leuconostoc lactic acid bacteria isolated from Kimchi. Korean J. Food Sci. Technol. 43: 169-175. https://doi.org/10.9721/KJFST.2011.43.2.169
  12. Kang, J., Z. Li, T. Wu, G. S. Jensen, A. G. Schauss, and X. Wu (2010) Anti-oxidant capacities of flavonoid compounds isolated from acai pulp (Euterpe oleracea Mart.). Food Chem. 122: 610-617. https://doi.org/10.1016/j.foodchem.2010.03.020
  13. Kang, O. J. (2010) Production of fermented tea with Rhodotorula yeast and comparison of its antioxidant effects to those of unfermented tea. Korean J. Food Cook. Sci. 26: 422-427.
  14. Park, S. J., E. S. Kim, Y. S. Choi, and J. D. Kim (2008) Effects of Sophorae fructus on antioxidative activities and lipid levels in rats. J. Korean Soc. Food Sci. Nutr. 37: 1120-1125. https://doi.org/10.3746/jkfn.2008.37.9.1120
  15. Suh, J., O. J. Paek, Y. Kang, J. E. Ahn, J. Yun, K. S. Oh, Y. S. An, S. H. Park, and S. J. Lee (2013) Study on the antioxidant activity in the various vegetables. J. Food Hyg. Saf. 28: 337-341. https://doi.org/10.13103/JFHS.2013.28.4.337
  16. Balogh, E., A. Hegedus, and E. Stefanovits-Banyai (2010) Application of and correlation among antioxidant and antiradical assays for characterizing antioxidant capacity of berries. Sci. Hortic. 125: 332-336. https://doi.org/10.1016/j.scienta.2010.04.015
  17. Cho, M. J., L. R. Howard, R. L. Prior, and J. R. Clark (2004) Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. J. Sci. Food Agr. 84: 1771-1782. https://doi.org/10.1002/jsfa.1885
  18. Zhu, N., S. Sheng, D. Li, E. J. LaVoie, M. V. Karwe, R. T. Rosen, and C. T. Ho (2001) Antioxidative flavonoid glycosides from quinoa seeds (Chenopodium quinoa Willd). J. Food Lipids 8: 37-44. https://doi.org/10.1111/j.1745-4522.2001.tb00182.x
  19. Bokkenheuser, V. D., C. Shackleton, and J. Winter (1987) Hydrolysis of dietary flavonoid glycosides by strains of intestinal bacteroides from humans. Biochem. J. 248: 953-956. https://doi.org/10.1042/bj2480953
  20. Yang, H. S., Y. J. Choi, H. H. Oh, J. S. Moon, H. K. Jung, K. J. Kim, B. S. Choi, J. W. Lee, and C. K. Huh (2014) Antioxidative activity of mushroom water extracts fermented by lactic acid bacteria. J. Korean Soc. Food Sci. Nutr. 43: 80-85. https://doi.org/10.3746/jkfn.2014.43.1.080
  21. Park, J. B., H.-S. S., S. J. Ha, and M. D. Kim (2015) Enhancement of antioxidative activities of berry or vegetable juices through fermentation by lactic acid bacteria. MBL 43: 291-295.
  22. Park, J. B., S. H. Lim, H. S. Sim, J. H. Park, H. J. Kwon, H. S. Nam, M. D. Kim, H. H. Baek, and S. J. Ha (2017) Changes in antioxidant activities and volatile compounds of mixed berry juice through fermentation by lactic acid bacteria. Food Sci. Biotechnol. 26: 441-446. https://doi.org/10.1007/s10068-017-0060-z
  23. Aceituno-Medina, M., S. Mendoza, B. A. Rodriguez, J. M. Lagaron, and A. Lopez-Rubio (2015) Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers. J. Funct. Foods 12: 332-341. https://doi.org/10.1016/j.jff.2014.11.028
  24. Omololu, P., J. Rocha, and I. Kade (2011) Attachment of rhamnosyl glucoside on quercetin confers potent iron-chelating ability on its antioxidant properties. Exp. Toxicol. Pathol. 63: 249-255. https://doi.org/10.1016/j.etp.2010.01.002
  25. Jang, M. and M. Kim (2010) Exploration of $\beta$-glucosidase activity of lactic acid bacteria isolated from Kimchi. Food Eng. Prog. 14: 243-248.