DOI QR코드

DOI QR Code

Antimelanogenic of Artemisia fukudo Makino Extract in Melanoma Cells

큰비쑥 추출물의 멜라닌 생성 억제 효과

  • Kim, Min-Jin (Nakdonggang National Institute of Biological Resources) ;
  • Kim, Seoyeon (Department of Chemistry and Cosmetics, Jeju National University) ;
  • Hyun, Kwang Hee (Helios) ;
  • Kim, Duk Soo (Department of Chemistry and Cosmetics, Jeju National University) ;
  • Kim, Seung-Young (Department of BT Convergent Pharmaceutical Engineering, Sunmoon University) ;
  • Hyun, Chang-Gu (Department of Chemistry and Cosmetics, Jeju National University)
  • 김민진 (국립낙동강생물자원관) ;
  • 김서연 (제주대학교 화학코스메틱스학과) ;
  • 현광희 (헬리오스) ;
  • 김덕수 (제주대학교 화학코스메틱스학과) ;
  • 김승영 (선문대학교 BT융합제약공학과) ;
  • 현창구 (제주대학교 화학코스메틱스학과)
  • Received : 2017.07.21
  • Accepted : 2017.08.04
  • Published : 2017.09.30

Abstract

Melanin is one of the most important factors affecting skin color. Melanogenesis is the bioprocess of melanin production by melanocytes in the skin and hair follicles and is mediated by several enzymes, such as tyrosinase, tyrosinase related protein (TRP)-1, and TRP-2, MITF. In this study, we investigated the effect of Artemisia fukudo Makino extracts on tyrosinase activity and melanin production as natural products of whitening functional cosmetics. Melanin content in murine B16F10 melanoma cells were decreased by Artemisia fukudo Makino extracts in a dose-dependently. In addition, the inhibition of tyrosinase activity of Artemisia fukudo Makino extracts showed to decrease tyrosinase activity as the concentration of ${\alpha}-MSH$ was increased. Furthermore, western blot analysis revealed that Artemisia fukudo Makino extracts significantly downregulated the expression of tyrosinase, TRP-1 which treat of ${\alpha}-MSH-induced$ melanogenesis in murine B16F10 melanoma cells. As a result, Artemisia fukudo Makino extract showed functionalities as an effective whitening agent to inhibit melanin formation.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Brown, D. A. (2001) Skin pigmentation enhancers. J. Photochem. Photobiol. B: Biol. 63: 148-161. https://doi.org/10.1016/S1011-1344(01)00212-3
  2. Cabanes, J., S. Chazarra, and F. Garxia-Carmona (1994) Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase. J. Pharm. Pharmacol. 46: 982-985. https://doi.org/10.1111/j.2042-7158.1994.tb03253.x
  3. Vincent, J. H. and J. Mercedes (1987) Mammalian tyrosinase-the critical regulatory control point in melanocyte pigmentation. Int. J. Biochem. 19: 1141-1147. https://doi.org/10.1016/0020-711X(87)90095-4
  4. Chang, Y. H., C. Kim, M. Jung, Y. H. Lim, S. Lee, and S. Kang (2007) Inhibition of melanogenesis by selina-4(14), 7(11)-diene-8-one isolated from Atractylodis Rhizoma Alba. Biol. Pharm. Bull. 30: 719-723. https://doi.org/10.1248/bpb.30.719
  5. Chakraborty, A. K., Y. Funasaka, A. Slominski, G. Ermak, J. Hwang, J. M. Pawelek, and M. Ichihashi (1996) Production and release of proopiomelanocortin (POMC) derived pep regulation by ultraviolet B. Biochim. Acta 1313: 130-138. https://doi.org/10.1016/0167-4889(96)00063-8
  6. Bertolotto, C., P. Abbe, T. J. Hemesath, K. Bille, D. E. Fisher, J. P. Ortonne, and R. Ballotti (1998) Microphthalmia gene product as a signal transducer in cAMP-induced differeniation of melanocytes. J. Cell Biol. 142: 827-835. https://doi.org/10.1083/jcb.142.3.827
  7. Cheli, Y., F. Luciani, M. Khaled, L. Beuret, K. Bille, P. Gounon, J. P. Ortonne, C. Bertolorro, and R. Ballotti (2009) Alpha-MSH and Cyclic AMP elevating agents control melanosome pH through a protein kinase A-independent mechanism. J. Biol. Chem. 284: 18699-18706. https://doi.org/10.1074/jbc.M109.005819
  8. Price, E. R., M. A. Horstmann, A. G. Wells, K. N. Weilbaecher, C. M. Takemoto, M. W. Landis, and D. E. Fisher (1998) Alpha-melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome. J. Biol. Chem. 273: 33042-33047. https://doi.org/10.1074/jbc.273.49.33042
  9. Goding, C. R. (2000) Mitf from neural crest to melanoma: Signal transduction and transcription in the melanocyte lineage. Genes & Dev. 14: 1712-1728.
  10. Tan, R. X., W. F. Zheng, and H. Q. Tang (1998) Biologically active substances from the genus Artemisia. Planta Med. 64: 295-302. https://doi.org/10.1055/s-2006-957438
  11. Yoon, W. J., J. A. Lee, J. Y. Kim, D. J. Oh, Y. H. Jung, W. J. Lee, and S. Y. Park (2007) Anti-oxidant activities and anti-inflammatory effects on Artemisia scoparia. Korean Journal of Pharmacognosy 37: 235-240.
  12. Ryu, J. H. (2011) Determination of biological activities and functional compounds from gaeddongssuk (Artemisia annua L.). Master's Thesis. University of Gyeongsang, Gyeongsangnam-do, Korea.
  13. Carmichael, J., W. G. Degraff, and A. F. Gadzar (1987) Evaluation of a tetrazolium based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res. 47: 936-942.
  14. Vincent, J. H. (1999) Biochemical control of melanogenesis and melanosomal organization. Soc. Invest. Dermatol. 4: 24-28. https://doi.org/10.1038/sj.jidsp.5640176
  15. Mallick, S., S. K. Singh, C. Sarkar, B. Saha, and R. Bhadra (2005) Human placental lipid induces melanogenesis by increasing the expression of tyrosinase and its related proteins in vitro. Pigment Cell Res. 18: 25-33. https://doi.org/10.1111/j.1600-0749.2004.00193.x
  16. Duncan, C. L. and E. M. Foster (1968) Effect of sodium nitrite, sodium chloride and sodium mitrate on germination and outgrowth of anaerobic spores. Appl. Microbiol. 16: 406-411.
  17. Imokawa, G. and Y. Mishima (1982) Loss of melanogenic properties in tyrosinase induced by glucosylation inhibitors within malignant melanoma cells. Cancer Res. 42: 1994-2002.
  18. Yang, H. O., W. H. Choi, B. H. Jeon, S. H. Baek, and H. J. Chun (2002) Water extract from Cornis Fructus regulates melanogenesis in B16/F10 melanoma. Korean J. Oriental Physiol. Patol. 16: 818-822.