Acknowledgement
Supported by : 부산대학교
References
- Le Du, F., B. L. Eckhardt, B. Lim, J. K. Litton, S. Moulder, F. Meric-Bernstam, A. M. Gonzalez-Angulo, and N. T. Ueno (2015) Is the future of personalized therapy in triple-negative breast cancer based on molecular subtype? Oncotarget. 6: 12890-12908.
- Mazzucchelli, S., M. Truffi, F. Baccarini, M. Beretta, L. Sorrentino, M. Bellini, M. A. Rizzuto, R. Ottria, A. Ravelli, P. Ciuffreda, D. Prosperi, and F. Corsi (2017) H-Ferritin-nanocaged olaparib: a promising choice for both BRCA-mutated and sporadic triple negative breast cancer. Sci. Rep. 7: 7505. https://doi.org/10.1038/s41598-017-07617-7
- Bayraktar, S. and S. Gluck (2013) Molecularly targeted therapies for metastatic triple-negative breast cancer. Breast Cancer Res. Treat. 138: 21-35. https://doi.org/10.1007/s10549-013-2421-5
- Vinod, B. S., H. H. Nair, V. Vijayakurup, A. Shabna, S. Shah, A. Krishna, K. S. Pillai, S. Thankachan, and R. J. Anto (2015) Resveratrol chemosensitizes HER-2-overexpressing breast cancer cells to docetaxel chemoresistance by inhibiting docetaxel-mediated activation of HER-2-Akt axis. Cell Death Discov. 1: 15061. https://doi.org/10.1038/cddiscovery.2015.61
- Sprouse, A. A. and B. S. Herbert (2014) Resveratrol augments paclitaxel treatment in MDA-MB-231 and paclitaxel-resistant MDA-MB-231 breast cancer cells. Anticancer Res. 34: 5363-5374.
- Cal, C., H. Garban, A. Jazirehi, C. Yeh, Y. Mizutani, and B. Bonavida (2003) Resveratrol and cancer: chemoprevention, apoptosis, and chemo-immunosensitizing activities. Curr. Med. Chem. Anticancer Agents. 3: 77-93. https://doi.org/10.2174/1568011033353443
- Langcake, P. and R. J. Pryce (1976) The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Pathol. 9: 77-86. https://doi.org/10.1016/0048-4059(76)90077-1
- Soleas, G. J., E. P. Diamandis, and DM Goldberg (1997) Resveratrol: a molecule whose time has come? And gone? Clin. Biochem. 30: 91-113. https://doi.org/10.1016/S0009-9120(96)00155-5
- Fremont, L. (2000) Biological effects of resveratrol. Life Sci. 66: 663-673. https://doi.org/10.1016/S0024-3205(99)00410-5
- Pervaiz, S. and A. L. Holme (2009) Resveratrol: Its biologic targets and functional activity. Antioxid. Redox. Signal. 11: 2851-2897. https://doi.org/10.1089/ars.2008.2412
- Sinha, D., N. Sarkar, J. Biswas, and A. Bishayee (2016) Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Semin. Cancer Biol. 40-41: 209-232. https://doi.org/10.1016/j.semcancer.2015.11.001
- Aluyen, J. K., Q. N. Ton, T. Tran, A. E. Yang, H. B. Gottlieb, and R. A. Bellanger (2012) Resveratrol: potential as anticancer agent. J. Diet Suppl. 9: 45-56. https://doi.org/10.3109/19390211.2011.650842
- Shindikar, A., A. Singh, M. Nobre, and S. Kirolikar (2016) Curcumin and resveratrol as promising natural remedies with nanomedicine approach for the effective treatment of triple negative breast cancer. J. Oncol. 2016: 9750785.
- Rai, G., S. Suman, S. Mishra, and Y. Shukla (2017) Evaluation of growth inhibitory response of Resveratrol and Salinomycin combinations against triple negative breast cancer cells. Biomed. Pharmacother. 89:1142-1151. https://doi.org/10.1016/j.biopha.2017.02.110
- Aluyen, J. K., Q. N. Ton, T. Tran, A. E. Yang, H. B. Gottlieb, and R. A. Bellanger (2012) Resveratrol: Potential as anticancer agent. J. Diet Suppl. 9: 45-56. https://doi.org/10.3109/19390211.2011.650842
-
Schech, A. J., A. A. Kazi, R. A. Gilani, and A. H. Brodie (2013) Zoledronic acid reverses the epithelial-mesenchymal transition and inhibits self-renewal of breast cancer cells through inactivation of
$NF-{\kappa}B$ . Mol. Cancer Ther. 12: 1356-1366. https://doi.org/10.1158/1535-7163.MCT-12-0304 - Pan, J., J. Shen, W. Si, C. Du, D. Chen, L. Xu, M. Yao, P. Fu, and W. Fan (2017) Resveratrol promotes MICA/B expression and natural killer cell lysis of breast cancer cells by suppressing c-Myc/ miR-17 pathway. Oncotarget.
- Benetatos, L., G. Vartholomatos, and E. Hatzi-michael (2014) Polycomb group proteins and MYC: The cancer connection. Cell Mol. Life Sci. 71: 257-269. https://doi.org/10.1007/s00018-013-1426-x
- van Lohuizen, M., S. Verbeek, B. Scheijen, E. Wientjens, H. van der Gulden and A. Berns (1991) Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65: 737-752. https://doi.org/10.1016/0092-8674(91)90382-9
- Siddique, H. R. and M. Saleem (2012) Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences. Stem Cells. 30: 372-378. https://doi.org/10.1002/stem.1035
- Honig, A., C. Weidler, S. Hausler, M. Krockenberger, S. Buchholz, F. Koster, S. E. Segerer, J. Dietl, and J. B. Engel (2010) Overexpression of polycomb protein BMI-1 in human specimens of breast, ovarian, endometrial and cervical cancer. Anticancer Res. 30:1559-1564.
- Zheng, X., Y. Wang, B. Liu, C. Liu, D. Liu, J. Zhu, C. Yang, J. Yan, X. Liao, X. Meng, and H. Yang (2014) Bmi-1-shRNA inhibits the proliferation of lung adenocarcinoma cells by blocking the G1/S phase through decreasing cyclin D1 and increasing p21/p27 levels. Nucleic Acid Ther. 24: 210-216. https://doi.org/10.1089/nat.2013.0459
- Xu, Z., H. Liu, X. Lv, Y. Liu, S. Li, and H. Li (2011) Knockdown of the Bmi-1 oncogene inhibits cell proliferation and induces cell apoptosis and is involved in the decrease of Akt phosphorylation in the human breast carcinoma cell line MCF-7. Oncol. Rep. 25: 409-418.
- Wang, Y. D., Y. J. Su, J. Y. Li, X. C. Yao, and G. J. Liang (2015) Rapamycin, a mTOR inhibitor, induced growth inhibition in retinoblastoma Y79 cell via down-regulation of Bmi-1. Int. J. Clin. Exp. Pathol. 8: 5182-5188.
- Deng, W., Y. Zhou, A. F. Tiwari, H. Su, J. Yang, V. M. Zhu, D. Lau, P. M. Hau, Y. L. Yip, A. L. Cheung, X. Y. Guan, and S. W. Tsao (2015) p21/Cyclin E pathway modulates anticlastogenic function of Bmi-1 in cancer cells. Int. J. Cancer 136: 1361-1370. https://doi.org/10.1002/ijc.29114
- Qin, L., X. Zhang, L. Zhang, Y. Feng, G. X. Weng, M. Z. Li, Q. L. Kong, C. N. Qian, Y. X. Zeng, M. S. Zeng, D. F. Liao, and L. B. Song (2008) Downregulation of BMI-1 enhances 5-fluorouracil-induced apoptosis in nasopharyngeal carcinoma cells. Biochem. Biophys. Res. Commun. 371: 531-535. https://doi.org/10.1016/j.bbrc.2008.04.117
- Wu, X., X. Liu, J. Sengupta, Y. Bu, F. Yi, C. Wang, Y. Shi, Y. Zhu, Q. Jiao, and F. Song (2011) Silencing of Bmi-1 gene by RNA interference enhances sensitivity to doxorubicin in breast cancer cells. Indian J. Exp. Biol. 49: 105-112.
- Gieni, R. S., I. H. Ismail, S. Campbell, and M. J. Hendzel (2011) Polycomb group proteins in the DNA damage response: A link between radiation resistance and "stemness". Cell Cycle 10: 883-894. https://doi.org/10.4161/cc.10.6.14907
- Liu, Z. G., L. Liu, L. H. Xu, W. Yi, Y. L. Tao, Z. W. Tu, M. Z. Li, M. S. Zeng, and Y. F. Xia (2012) Bmi-1 induces radioresistance in MCF-7 mammary carcinoma cells. Oncol. Rep. 27: 1116-1122. https://doi.org/10.3892/or.2011.1615
- Lanzilli, G., M. P. Fuggetta, M. Tricarico, A. Cottarelli, A. Serafino, R. Falchetti, G. Ravagnan, M. Turriziani, R. Adamo, O. Franzese, and E. Bonmassar (2006) Resveratrol down-regulates the growth and telomerase activity of breast cancer cells in vitro. Int. J. Oncol. 28: 641-648.
- Liu, S., G. Dontu, I. D. Mantle, S. Patel, N. S. Ahn, K. W. Jackson, P. Suri, and M. S. Wicha (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 66: 6063-6071. https://doi.org/10.1158/0008-5472.CAN-06-0054