DOI QR코드

DOI QR Code

Inhibitory Effect of Globefish Homogenate on the Growth of Caco-2 Human Colorectal Cancer Cells

복어 균질액의 Caco-2 인간 결장직장암세포 성장 억제 효과에 대한 연구

  • Received : 2017.07.26
  • Accepted : 2017.08.23
  • Published : 2017.09.30

Abstract

Colorectal cancer is a leading cause of cancer mortality worldwide. Many studies show that most cases of human colorectal cancer arise from adenomatous polyps, which are usually dysplastic, nonmalignant precursor lesions; however, accumulation of multiple somatic mutations leads some to develop into advanced adenoma, which ultimately progresses to an invasive colorectal cancer. Notwithstanding the efforts made to improve chemotherapy, most colorectal cancers are unresponsive to this form of treatment, and malignant colorectal cancers remain incurable. To reduce the incidence of colorectal cancer mortality, further studies to improve colorectal cancer treatment are needed. Here, we show that Globefish homogenate suppresses the growth of Caco-2 human colorectal cancer cells, and that the homogenate inhibits Caco-2 cell proliferation in a dose-dependent manner. These data suggest that Globefish homogenate may suppress colorectal cancer development.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Lao, V. V. and W. M. Grady (2011) Epigenetics and colorectal cancer. Nat. Rev. Gastroenterol Hepatol. 8: 686-700. https://doi.org/10.1038/nrgastro.2011.173
  2. Siegel, R. L., K. D. Miller, S. A. Fedewa, D. J. Ahnen, R. G. S. Meester, A. Barzi, and A. Jemal (2017) Colorectal cancer statistics. 2017, CA Cancer J. Clin. 67: 177-193. https://doi.org/10.3322/caac.21395
  3. Siegel, R. L., K. D. Miller, and A. Jemal (2017) Cancer statistics. 2017, CA Cancer J. Clin. 67: 7-30. https://doi.org/10.3322/caac.21387
  4. Tariq, K. and K. Ghias (2016) Colorectal cancer carcinogenesis: a review of mechanisms. Cancer Biol. Med. 13: 120-135. https://doi.org/10.20892/j.issn.2095-3941.2015.0103
  5. Koivisto, T. and M. Salaspuro (1998) Acetaldehyde alters proliferation, differentiation and adhesion properties of human colon adenocarcinoma cell line Caco-2. Carcinogenesis. 19: 2031-2036. https://doi.org/10.1093/carcin/19.11.2031
  6. Melcher, R., S. Koehler, C. Steinlein, M. Schmid, C. R. Mueller, H. Luehrs, T. Menzel, W. Scheppach, H. Moerk, M. Scheurlen, J. Koehrle, and O. Al-Taie (2002) Spectral karyotype analysis of colon cancer cell lines of the tumor suppressor and mutator pathway. Cytogenet. Genome Res. 98: 22-28. https://doi.org/10.1159/000068544
  7. Delage, S., E. Chastre, S. Empereur, D. Wicek, D. Veissiere, J. Capeau, C. Gespach, and G. Cherqui (1993) Increased protein kinase C alpha expression in human colonic Caco-2 cells after insertion of human Ha-ras or polyoma virus middle T oncogenes. Cancer Res. 53: 2762-2770.
  8. Chastre, E., S. Empereur, Y. Di Gioia, N. el Mahdani, M. Mareel, K. Vleminckx, F. Van Roy, V. Bex, S. Emami, D. A. Spandidos, and et al. (1993) Neoplastic progression of human and rat intestinal cell lines after transfer of the ras and polyoma middle T oncogenes. Gastroenterology 105: 1776-1789. https://doi.org/10.1016/0016-5085(93)91076-T
  9. Rousset, M., E. Dussaulx, G. Chevalier, and A. Zweibaum (1980) Growth-related glycogen levels of human intestine carcinoma cell lines grown in vitro and in vivo in nude mice. J. Natl. Cancer Inst. 65: 885-889.
  10. Gaiser, T., J. Camps, S. Meinhardt, D. Wangsa, Q. T. Nguyen, S. Varma, C. Dittfeld, L. A. Kunz-Schughart, R. Kemmerling, M. R. Becker, K. Heselmeyer-Haddad, and T. Ried (2011) Genome and transcriptome profiles of CD133-positive colorectal cancer cells. Am. J. Pathol. 178: 1478-1488. https://doi.org/10.1016/j.ajpath.2010.12.036
  11. Quaranta, M. G., L. Falzano, O. Vincentini, C. Fiorentini, L. Giordani, and M. Viora (2011) Effects of HIV-1 Nef on virus co-receptor expression and cytokine release in human bladder, laryngeal, and intestinal epithelial cell lines. Viral Immunol. 24: 245-250. https://doi.org/10.1089/vim.2010.0112
  12. Jumarie, C. and C. Malo (1991) Caco-2 cells cultured in serum-free medium as a model for the study of enterocytic differentiation in vitro. J. Cell Physiol. 149: 24-33. https://doi.org/10.1002/jcp.1041490105
  13. Levin, M. S. and A. E. Davis (1997) Retinoic acid increases cellular retinol binding protein II mRNA and retinol uptake in the human intestinal Caco-2 cell line. J. Nutr. 127: 13-17. https://doi.org/10.1093/jn/127.1.13
  14. Hwang, S.-M. and K.-S. Oh (2013) Comparisons of food component characteristics of wild and cultured edible pufferfishes in Korea. Kor. J. Fish Aquat. Sci. 46: 725-732.
  15. Han, K.-H., J.-I. Baek, L.-S. Shin, H.-J. Kim, B.-I. Yoon, J.-H. Hwang, and S.-H. Lee (2017) Morphological description of three species of pufferfishes (Tetraodontidae) from India. Korean J. Fish Aquat. Sci. 50: 77-84.
  16. Bane, V., M. Lehane, M. Dikshit, A. O'Riordan, and A. Furey (2014) Tetrodotoxin: chemistry, toxicity, source, distribution and detection. Toxins (Basel). 6: 693-755. https://doi.org/10.3390/toxins6020693
  17. Jal, S. and S. S. Khora (2015) An overview on the origin and production of tetrodotoxin, a potent neurotoxin. J. Appl. Microbiol. 119: 907-916. https://doi.org/10.1111/jam.12896
  18. Matsumura, K. (1996) Tetrodotoxin concentrations in cultured pufferfish, Fugu rubripes. J. Agr. Food Chem. 44: 1-2. https://doi.org/10.1021/jf950576l
  19. Jang, H.-C., J.-U. Park, and J.-H. Kim (2003) A study on the generative reason of the toxicity for the pufferfish. J. Fish Mar. Sci. Edu. 15: 67-80.

Cited by

  1. 복어(Takifugu obscurus) 균질액에 의한 MCF-7 인간 유방암세포 성장 억제 효과 vol.53, pp.6, 2017, https://doi.org/10.5657/kfas.2020.0878