DOI QR코드

DOI QR Code

Identification and Characterization of Hemolytic Bacillus cereus Isolated from Commercial Ssam-jang

시판 쌈장에서 분리한 용혈성 Bacillus cereus의 동정 및 특성 조사

  • Kim, Dong-Min (Department of Biotechnology, The University of Tokyo) ;
  • Park, Sang-Kook (Department of Life Science and Biotechnology, Soonchunhyang University) ;
  • Oh, Kye-Heon (Department of Life Science and Biotechnology, Soonchunhyang University)
  • 김동민 (동경대학 생명공학과) ;
  • 박상국 (순천향대학교 생명시스템학과) ;
  • 오계헌 (순천향대학교 생명시스템학과)
  • Received : 2017.05.26
  • Accepted : 2017.07.26
  • Published : 2017.09.30

Abstract

This study was undertaken to identify and characterize hemolytic Bacillus cereus isolated from commercial ssam-jang. The physiological and biochemical properties of isolate were first examined. Using the BIOLOG system, the isolate was identified and assigned to B. cereus MH-2. Phylogenetic tree of MH-2 was plotted based on 16S rRNA sequence comparisons. Hemolytic activity was observed around wells of sheep blood agar plates seeded with MH-2 cultures; the zone of hemolysis gradually increased with increasing incubation time of the cultures. Zymographic analysis estimated the molecular weight of the presumed hemolysis-causing molecule to be about 30 kDa. Survival rates of MH-2 cells decreased with increasing NaCl concentrations in the media. The stress shock proteins (e.g., DnaK and GroEL) induced by NaCl were reduced in proportion to the NaCl concentration and exposure period to B. cereus MH-2. Analysis of SDS-PAGE and Western blot revealed that the stress shock proteins, 70-kDa DnaK and 60-kDa GroEL were decreased proportionate to the NaCl concentrations as well as exposure period in exponentially growing cultures. Scanning electron microscopy demonstrated the presence of perforations and irregular rod forms with wrinkled surfaces in cells treated with NaCl.

Keywords

Acknowledgement

Supported by : 순천향대학교

References

  1. Kwon, S. H., K. B. Lee, K. S. Im, S. O. Kim, and K. Y. Park (2006) Weight reduction and lipid lowering effects of Korean traditional soybean fermented products. Kor. J. Food Sci. Nutr. 35: 1194-1199. https://doi.org/10.3746/jkfn.2006.35.9.1194
  2. Kwak, C. S., M. S. Lee, and S. C. Park (2007) Higher antioxidant properties of cheonggukjang, a fermented soybean paste, may be due to increased aglycone and malonylglycoside isoflavone during fermentation. Nutr. Res. 27: 719-727. https://doi.org/10.1016/j.nutres.2007.09.004
  3. Park, Y. B., J. B. Kim, S. W. Shin, J. C. Kim, S. H. Cho, B. K. Lee, J. J. Ahn, and D. H. Oh (2009) Prevalence, genetic diversity, and antibiotic susceptibility of Bacillus cereus strains isolated from rice and cereals collected in Korea. J. Food Prot. 72: 612-617. https://doi.org/10.4315/0362-028X-72.3.612
  4. Granum, P. E. and T. Lund (1997) Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 157: 223-228. https://doi.org/10.1111/j.1574-6968.1997.tb12776.x
  5. Do, S. D., Y. M. Lee and H. G. Chang (1993) The study on kinds and utilities of jeot-kal (fermented fish products). Kor. J. Soc. Food Sci. 9: 222-229.
  6. World Health Organization (2007) Reducing salt intake in populations. Report of a WHO Forum and Technical Meeting, Geneva, Switzerland.
  7. Choi, S. A. and M. S. Cho (2012) Changes in quality characteristics of eggplant pickles by salt content and drying time during storage. J. Kor. Soc. Food Cult. 27: 211-224. https://doi.org/10.7318/KJFC/2012.27.2.211
  8. Raevuori, M. and C. Genigeorgis (1975) Effect of pH and sodium chloride on growth of Bacillus cereus in laboratory media and certain foods. Appl. Microbiol. 29: 68-73.
  9. Leber, T. M. and F. R. Balkwill (1997) Zymography: A single-step staining method for quantitation of proteolytic activity on substrate gels. Anal. Biochem. 249: 24-28. https://doi.org/10.1006/abio.1997.2170
  10. Kleiner, D. E. and W. G. Stetlerstevenson (1994). Quantitative zymography: Detection of picogram quantities of gelatinases. Anal. Biochem. 218: 325-329. https://doi.org/10.1006/abio.1994.1186
  11. Kim, D. M., S. K. Park, and K. H. Oh (2016) Cellular responses and proteomic analysis of hemolytic Bacillus cereus MH-2 exposed to epigallocatechin gallate (EGCG). Kor. J. Microbiol. 52: 260-268. https://doi.org/10.7845/kjm.2016.6044
  12. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  13. Beecher, D. J. and A. C. Wong (1994) Identification of hemolysin BL-producing Bacillus cereus isolates by a discontinuous hemolytic pattern in blood agar. Appl. Environ. Microbiol. 60: 1646-1651.
  14. Beecher, D. J., J. L. Schoeni, and A. C. Wong (1995) Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect. Immun. 63: 4423-4428.
  15. Dietrich, R., C. Fella, S. Strich, and E. Martlbauer (1999) Production and characterization of monoclonal antibodies against the hemolysin BL enterotoxin complex produced by Bacillus cereus. Appl. Environ. Microbiol. 65: 4470-4474.
  16. Allison, H. E. and J. D. Hillman (1997) Cloning and characterization of a Prevotella melaninogenica hemolysin. Infect. Immun. 65: 2765-2771.
  17. Yang, H. O., M. S. Cha, and M. J. Kim (1998) Studies on the hemolysin produced by Vibrio vulnificus ys-1. Kor. J. Life Sci. 8: 145-157.
  18. Rossignol, G., A. Merieau, J. Guerillon, W. Veron, O. Lesouhaitier, M. G. Feuilloley, and N. Orange (2008) Involvement of a phospholipase C in the hemolytic activity of a clinical strain of Pseudomonas fluorescens. BMC Microbiol. 8: 189. https://doi.org/10.1186/1471-2180-8-189
  19. den Besten, H. M., C. J. Ingham, van Hylckama Vlieg, J. E., Beerthuyzen, M. M., M. H. Zwietering, and T. Abee (2007). Quantitative analysis of population heterogeneity of the adaptive salt stress response and growth capacity of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 73: 4797-4804. https://doi.org/10.1128/AEM.00404-07
  20. Periago, P. M., W. van Schaik, T. Abee, and J. A. Wouters (2002) Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 68: 3486-3495. https://doi.org/10.1128/AEM.68.7.3486-3495.2002
  21. Chuang, S. E. and F. R. Blatiber (1993) Characterization of twenty six new heat shock genes of Escherichia coli. J. Bacteriol. 175: 5242-5252. https://doi.org/10.1128/jb.175.16.5242-5252.1993
  22. Kim, D. M. and K. H. Oh (2016) Characterization of hemolytic Aeromonas sp. MH-8 responding to the green tea catechin, EGCG. KSBB 31: 228-236. https://doi.org/10.7841/ksbbj.2016.31.4.228
  23. Shigemune, N., M. Nakayama, T. Tsugukuni, J. Hitomi, C. Yoshizawa, Y. Mekada, M. Kurahachi, and T. Miyamoto (2012) The mechanisms and effect of epigallocatechin gallate (EGCg) on the germination and proliferation of bacterial spores. Food Control 27: 269-274. https://doi.org/10.1016/j.foodcont.2012.04.003