참고문헌
- AISC - ASD (1989), Manual of Steel Construction: Allowable Stress Design, American Institute of Steel Construction, Chicago, IL, USA.
- Artar, M. (2016a), "Optimum design of steel space frames under earthquake effect using harmony search", Struct. Eng. Mech., 58(3), 597-612. https://doi.org/10.12989/sem.2016.58.3.597
- Artar, M. (2016b), "Optimum design of braced steel frames via teaching learning based optimization", Steel Compos. Struct., 22(4), 733-744. https://doi.org/10.12989/scs.2016.22.4.733
- Artar, M. and Daloglu, A.T. (2015), "Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm", Steel Compos. Struct., 19(4), 1035-1053. https://doi.org/10.12989/scs.2015.19.4.1035
- Aydogdu, I. (2017), "Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights", Eng. Optim., 49(3), 381-400. https://doi.org/10.1080/0305215X.2016.1191837
- Aydogdu, I. and Saka, M.P. (2012), "Ant colony optimization of irregular steel frames including elemental warping effect", Adv. Eng. Softw., 44(1), 150-169. https://doi.org/10.1016/j.advengsoft.2011.05.029
- Aydogdu, I., Efe, P., Yetkin, M. and Akin, A. (2017), "Optimum design of steel space structures using social spider optimization algorithm with spider jump technique", Struct. Eng. Mech., 62(3), 259-272. https://doi.org/10.12989/sem.2017.62.3.259
- Camp, C.V. and Bichon, B.J. (2004), "Design of space trusses using ant colony optimization" J. Struct. Eng., 130 (5), 741-51. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(741)
- Camp, C.V. and Farshchin, M. (2014), "Design of space trusses using modified teaching-learning based optimization", Eng. Struct., 62-63, 87-97. https://doi.org/10.1016/j.engstruct.2014.01.020
- Carbas, S. (2016), "Design optimization of steel frames using an enhanced firefly algorithm", Eng. Optim., 48(12), 2007-2025. https://doi.org/10.1080/0305215X.2016.1145217
- Crepinsek, M., Liu, S.H. and Mernik, L. (2012), "A note on teaching-learning-based optimization algorithm", Inform. Sci., 212, 79-93. https://doi.org/10.1016/j.ins.2012.05.009
- Dede, T. (2013), "Optimum design of grillage structures to LRFDAISC with teaching-learning based optimization", Struct. Multidisc. Optim., 48(5), 955-964. https://doi.org/10.1007/s00158-013-0936-3
- Dede, T. (2014), "Application of teaching-learning-basedoptimization algorithm for the discrete optimization of truss structures", KSCE J. Civil Eng., 18(6), 1759-1767. https://doi.org/10.1007/s12205-014-0553-8
- Dede, T. and Ayvaz, Y. (2013), "Structural optimization with teaching-learning-based optimization algorithm", Struct. Eng. Mech., 47(4), 495-511. https://doi.org/10.12989/sem.2013.47.4.495
- Dede, T. and Ayvaz, Y. (2015), "Combined size and shape optimization of structures with a new meta-heuristic algorithm", Appl. Soft Comput., 28, 250-258. https://doi.org/10.1016/j.asoc.2014.12.007
- Dede, T. and Togan, V. (2015), "A teaching learning based optimization for truss structures with frequency constraints", Struct. Eng. Mech., 53(4), 833-845. https://doi.org/10.12989/sem.2015.53.4.833
- Degertekin, S.O. (2012), "Optimum design of geometrically nonlinear steel frames using artificial bee colony algorithm", Steel Compos. Struct., 12(6), 505-522. https://doi.org/10.12989/scs.2012.12.6.505
- Degertekin, S.O. and Hayalioglu, M.S. (2010), "Harmony search algorithm for minimum cost design of steel frames with semirigid connections and column bases", Struct. Multidisc. Optim., 42(5), 755-768. https://doi.org/10.1007/s00158-010-0533-7
- Degertekin, S.O. and Hayalioglu, M.S.(2013), "Sizing truss structures using teaching-learning-based optimization", Comput. Struct., 119, 177-188 https://doi.org/10.1016/j.compstruc.2012.12.011
- Degertekin, S.O., Hayalioglu, M.S. and Ulker, M.(2007), "Tabu search based optimum design of geometrically non-linear steel space frames", Struct. Eng. Mech., 27(5), 575-588. https://doi.org/10.12989/sem.2007.27.5.575
- Degertekin, S.O., Hayalioglu, M.S. and Ulker, M.(2008), "A hybrid tabu simulated annealing heuristic algirthm for optimum design of steel frames", Steel Compos. Struct., 8(6), 475-490. https://doi.org/10.12989/scs.2008.8.6.475
- Esen, Y. and Ulker, M. (2008), "Optimization of multi storey space steel frames, materially and geometrically properties nonlinear", J. Fac. Eng. Arch. Gazi Univ., 23(2), 485-494.
- Hadidi, A. and Rafiee, A. (2014), "Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames", Struct. Eng. Mech., 50(3), 323-347. https://doi.org/10.12989/sem.2014.50.3.323
- Hasancebi, O., Carbas, S. and Saka, M.P. (2010), "Improving the performance of simulated annealing in structural optimization", Struct. Multidisc. Optim., 41, 189-203. https://doi.org/10.1007/s00158-009-0418-9
- Kameshki, E.S. and Saka, M.P. (2001), "Genetic algorithm based optimum bracing design of non-swaying tall plane frames", J. Constr. Steel Res., 57(10), 1081-1097. https://doi.org/10.1016/S0143-974X(01)00017-7
- Kelesoglu, O. and Ulker, M. (2005), "Multi-objective fuzzy optimization of space trusses by Ms-Excel", Adv. Eng. Softw., 36(8), 549-553. https://doi.org/10.1016/j.advengsoft.2005.02.001
- Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82, 781-798. https://doi.org/10.1016/j.compstruc.2004.01.002
- Li, L.J., Huang, Z.B. and Liu, F.A. (2009) "A heuristic particle swarm optimization method for truss structures with discrete variables", Comput. Struct., 87 (7-8), 435-443. https://doi.org/10.1016/j.compstruc.2009.01.004
- Ma, Y., Li, Y. and Wang, F. (2009), "Corrosion of low carbon steel in atmospheric environments of different choleride content", Corros. Sci., 51(5), 997-1006. https://doi.org/10.1016/j.corsci.2009.02.009
- MATLAB (2009), The Language of Technical Computing; The Mathworks, Natick, MA, USA.
- Rafiee, A., Talatahari, S. and Hadidi, A. (2013), "Optimum design of steel frames with semi-rigid connections using Big Bang-Big Crunch method", Steel Compos. Struct., 14(5), 431-451. https://doi.org/10.12989/scs.2013.14.5.431
- Rajeev, S. and Krishnamoorthy, C.S. (1992), "Discrete optimization of structures using genetic algorithms", J. Struct. Eng., ASCE, 118(5), 1233-1250. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
- Rao, R.V. and Patel, V. (2012), "An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems'", Int. J. Ind. Eng. Comput., 3(4), 535-560. https://doi.org/10.5267/j.ijiec.2012.03.007
- Rao, R.V. and Patel, V. (2013), "An improved teaching-learningbased optimization algorithm for solving unconstrained optimization problems", Sci. Iran., 20(3), 710-720.
- Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teachinglearning-based optimization: A novel method for constrained mechanical design optimization problems", Comput. Aid. Des., 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015
- Saka, M.P. (2009), "Optimum design of steel sway frames to BS5950 using harmony search algorithm", J. Constr. Steel Res., 65(1), 36-43. https://doi.org/10.1016/j.jcsr.2008.02.005
- SAP2000 (2008), Integrated Finite Elements Analysis and Design of Structures, Computers and Structures, Inc, Berkeley, CA.
- Sonmez, M. (2011), "Discrete optimum design of truss structures using artificial bee colony algorithm", Struct. Multidisc Optim., 43 (1), 85-97. https://doi.org/10.1007/s00158-010-0551-5
- Togan, V. (2012), "Design of planar steel frames using teachinglearning based optimization", Eng. Struct., 34, 225-232. https://doi.org/10.1016/j.engstruct.2011.08.035