DOI QR코드

DOI QR Code

Luminescence Properties of La2MoO6:RE3+ (RE = Eu, Sm) Phosphors Subjected to the Different Concentrations of Activator Ions

활성제 이온의 농도 변화에 따른 La2MoO6:RE3+ (RE = Eu, Sm) 형광체의 발광 특성

  • Kim, Gayeon (Division of Materials Science and Engineering, Silla University) ;
  • Shin, Johngeon (Division of Materials Science and Engineering, Silla University) ;
  • Cho, Shinho (Division of Materials Science and Engineering, Silla University)
  • 김가연 (신라대학교 신소재공학부) ;
  • 신종언 (신라대학교 신소재공학부) ;
  • 조신호 (신라대학교 신소재공학부)
  • Received : 2017.07.15
  • Accepted : 2017.08.05
  • Published : 2017.08.31

Abstract

$Eu^{3+}$- or $Sm^{3+}$-doped $La_2MoO_6$ phosphors were synthesized with different concentrations of activator ions via a solid-state reaction. The X-ray diffraction patterns exhibited that crystalline structures of all the phosphors were tetragonal systems with the dominant peak occurring at (103) plane, irrespective of the concentration and the type of activator ions. The crystallites showed the pebble-like crystalline shapes and the average crystallite size increased with a tendency to agglomerate as the concentration of $Eu^{3+}$ ions increased. The excitation spectra of $Eu^{3+}$-doped $La_2MoO_6$ phosphors contained an intense charge transfer band centered at 331 nm in the range of 250-370 nm and three weak peaks at 381, 394, and 415 nm, respectively, due to the $^7F_0{\rightarrow}^5L_7$, $^7F_0{\rightarrow}^5L_6$, and $^7F_0{\rightarrow}^5D_3$ transitions of $Eu^{3+}$ ions. The emission spectra under excitation at 331 nm exhibited a strong red band centered at 620 nm and two weak bands at 593 and 704 nm. As the concentration of $Eu^{3+}$ increased from 1 to 20 mol%, the intensities of all the emission bands gradually increased. For the $Sm^{3+}$-doped $La_2MoO_6$ phosphors, the emission spectra consisted of an intense emission band at 607 nm arising from the $^4G_{5/2}{\rightarrow}^6H_{7/2}$ transition and three relatively small bands at 565, 648, and 707 nm originating from the $^4G_{5/2}{\rightarrow}^6H_{5/2}$, $^4G_{5/2}{\rightarrow}^6H_{9/2}$, and $^4G_{5/2}{\rightarrow}^6H_{11/2}$ transitions of $Sm^{3+}$, respectively. The intensities of all the emission bands approached maxima when concentration of $Sm^{3+}$ ions was 5 mol%. These results indicate that the optimum concentrations for highly-luminescent red and orange emission are 20 mol% of $Eu^{3+}$ and 5 mol% of $Sm^{3+}$ ions, respectively.

Keywords

References

  1. M. J. Oh, H. J. Kim, H. Park, S. H. Kim, Development and Characterization of $Ln^{3+}$-doped $Gd_2GeO_5$ Phosphors, J. Korean Phys. Soc. 63(7) (2013) 1427-1431. https://doi.org/10.3938/jkps.63.1427
  2. N. Niu, P. Yang, W. Wang, F. He, S. Gai, D. Wang, J. Lin, Solvothermal Synthesis of $SrMoO_4$:Ln (Ln=$Eu^{3+}$, $Tb^{3+}$, $Dy^{3+}$) nanoparticles and Its Photoluminescence Properties at Room Temperature, Mater. Res. Bull. 46 (2011) 333-339. https://doi.org/10.1016/j.materresbull.2010.12.016
  3. M. Nazarov, D. Y. Noh, Rare Earth Double Activated Phosphors for Different Applications, J. Rare Earth. 28 (2010) 1-11.
  4. F. Meng, X. Zhang, H. Li, H. J. Seo, Synthesis and Spectral Characteristics of $La_2MoO_6$:$Ln^{3+}$ (Ln=Eu, Sm, Dy, Pr, Tb) Polycrystals, J. Rare Earth. 30(9) (2012) 866-870. https://doi.org/10.1016/S1002-0721(12)60147-1
  5. C. C. Lin, Y. S. Tang, S. F. Hu, R. S. Liu, $KBaPO_4$:Ln (Ln=Eu, Tb, Sm) Phosphors for UV Excitable White Light-Emitting Diodes, J. Lumin. 129 (2009) 1682-1684. https://doi.org/10.1016/j.jlumin.2009.03.022
  6. Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, Y. J. Lin, Synthesis and Luminescent Properties of $Ln^{3+}$ ($Eu^{3+}$, $Sm^{3+}$, $Dy^{3+}$)-doped Lanthanum Aluminum Germanate $LaAlGe_2O_7$ Phosphors, J. Alloy. Compd. 439 (2007) 367-375. https://doi.org/10.1016/j.jallcom.2006.08.269
  7. R. Yadav, A. F. Khan, A. Yadav, H. Chander, D. Haranath, B. Kr. Gupta, V. Shanker, S. Chawla, Intense Red-emitting $Y_4Al_2O_9$:$Eu^{3+}$ Phosphor with Short Decay Time and High Color Purity for Advanced Plasma Display Panel, Opt. Express, 17(24) (2009) 22023-22030. https://doi.org/10.1364/OE.17.022023
  8. F. Bi, X. Dong, J. Wang, G. Liu, Electrospinning Preparation and Photoluminescence Properties of $Y_3Al_5O_{12}$:$Eu^{3+}$ Nanobelts, Mater. Res. 18(2) (2015) 411-416. https://doi.org/10.1590/1516-1439.351314
  9. Z. Yang, Y. Han, Y. Song, Y. Zhao, P. Liu, Synthesis and Luminescence Properties of a novel red $Sr_3Bi(PO_4)_3$:$Sm^{3+}$ Phosphor, J. Rare Earth. 30(12) (2012) 1199-1202. https://doi.org/10.1016/S1002-0721(12)60205-1
  10. J. Kim, S. Cho, Synthesis and Photoluminescence Properties of $Dy^{3+}$- and $Eu^{3+}$-codoped $CaMoO_4$ Phosphors, J. Kor. Inst. Surf. Eng. 48(3) (2015) 82-86. https://doi.org/10.5695/JKISE.2015.48.3.82
  11. S. Kaur, A. S. Rao, M. Jayasimhadri, Spectroscopic and Photoluminescence Characteristics of $Sm^{3+}$ doped Calcium Aluminozincate Phosphor for Applications in w-LED, Ceram. Int. 43 (2017) 7401-7407. https://doi.org/10.1016/j.ceramint.2017.02.129
  12. S. Cho, Synthesis and Luminescence Properties of $LaVO_4$:$RE^{3+}$ (RE=Sm, Eu, Tb, Tm) Phosphors, J. Nanosci. Nanotechno. 13(11) (2013) 7546-7550.
  13. P. L. Li, Z. P. Yang, Z. J. Wang, Q. L. Guo, Luminescence Characteristics of $Eu^{3+}$ Activated Borate Phosphor for White Light Emitting Diode, Chinese Phys. B, 17(5) (2008) 1907-1910. https://doi.org/10.1088/1674-1056/17/5/060
  14. S. Shi, J. Gao, J. Zhou, Effects of Charge Compensation on the Luminescence Behavior of $Eu^{3+}$ Activated $CaWO_4$ Phosphor, Opt. Mater. 30 (2008) 1616-1620. https://doi.org/10.1016/j.optmat.2007.10.007
  15. Y. Tao, G. Zhao, X. Ju, X. Shao, W. Zhang, S. Xia, EXAFS Studies of Luminescence Centres in $Eu^{3+}$ Doped Nanoscale Phosphors, Mater Lett. 28 (1996) 137-140. https://doi.org/10.1016/0167-577X(96)00041-9
  16. G. S. R. Raju, J. S. Yu, J. Y. Park, H. C. Jung, B. K. Moon, Photouminescence and Cathodoluminescence Properties of Nanocrystalline $Ca_2Gd_8Si_6O_{26}$:$Sm^{3+}$ Phosphors, J. Am. Ceram. Soc. 95(1) (2012) 238-242. https://doi.org/10.1111/j.1551-2916.2011.04762.x
  17. Sk. Mahamuda, K. Swapna, M. Venkateswarlu, A. S. Rao, S. Shakya, G. V. Prakash, Spectral Characterisation of $Sm^{3+}$ ions doped Oxyfluoroborate Glasses for Visible Orange Luminescent Applications, J. Lumin. 154 (2014) 410-424. https://doi.org/10.1016/j.jlumin.2014.05.017
  18. X. Xiao, G. Lu, S. Shen, D. Mao, Y. Guo, Y. Wang, Synthesis and Luminescence Properties of $YVO_4$:$Eu^{3+}$ Cobblestone-like microcrystalline Phosphors Obtained from the Mixed Solvent-Thermal Method, Mater. Sci. Eng. B, 176 (2011) 72-78. https://doi.org/10.1016/j.mseb.2010.09.005
  19. B. J. Chen, L. F. Shen, E. Y. B. Pun, H. Lin, $Sm^{3+}$-doped Germanate Glass Channel Waveguide as Light Source for Minimally Invasive Photodynamic Therapy Surgery, Opt. Express, 20(2) (2012) 879-889. https://doi.org/10.1364/OE.20.000879
  20. B. Tian, B. Chen, Y. Tian, J. Sun, X. Li, J. Zhang, H. Zhong, L. Cheng, R. Hua, Concentration and Temperature Quenching Mechanisms of $Dy^{3+}$ Luminescence in $BaGd_2ZnO_5$ Phosphors, J. Phys. Chem. Solids, 73 (2012) 1314-1319. https://doi.org/10.1016/j.jpcs.2012.06.016