DOI QR코드

DOI QR Code

2016년 9월 경주지진 소고(小考)

Discussions on the September 2016 Gyeongju Earthquakes

  • 투고 : 2017.07.31
  • 심사 : 2017.08.29
  • 발행 : 2017.08.31

초록

2016년 9월 12일 규모 5.8의 본진을 포함한 일련의 지진들이 경주에서 발생했다. 본진은 1905년 한반도에서 지진관측을 시작한 이래 반도 남부에서 발생한 최대의 지진으로서 양산단층이 명백한 활성단층임을 입증하였다. 콘래드 불연속면이 없는 단층의 한반도 지각 모델에 의한 경주지진들의 전진, 본진, 여진들의 평균깊이는 12.9 km로 콘래드 불연속면이 있는 2층 구조의 IASP91 모델에 의한 평균깊이보다 2.8 km 낮다. 경주지역에서 발생한 역사지진 및 계기지진들의 진앙분포는 주 단층인 양산단층과 부속 단층을 포함하는 양산단층계가 광범위한 파쇄대임을 시사한다. 규모 5.8의 경주지진에 수반한 지진들의 진앙분포는 양산단층계의 몇 단층들이 응력에너지의 방출에 관여하였음을 지시한다. 경주지진들의 주요 지진들이 지표가 아닌 10 km 이하에서 발생한 것은 양산단층계의 심부 활성단층들의 분포를 연구할 필요성을 제기한다. 경주지역의 지진자료에 근거하여 추정한 이 일대의 최대지진의 규모는 7.3이다. 한반도의 가장 완전한 1978년 이후의 지진자료를 이용하여 추정한 경주지역의 규모 5.0, 6.0, 7.0을 초과하는 지진들의 재현간격은 각기 80년, 670년, 그리고 5,900년이다. 2016년 9월 경주지진들은 본질적으로 판내부지진활동의 범주에 속하며 2011년 3월 11일 일본해구에서 발생한 판경계지진횔동인 동일본대지진과는 무관하다.

A sequence of earthquakes with the main shock $M_L$ 5.8 occurred on September 12 2016 in the Gyeongju area. The main shock was the largest earthquakes in the southern part of the Korean peninsula since the instrumental seismic observation began in the peninsula in 1905 and clearly demonstrated that the Yangsan fault is seismically active. The mean focal depth of the foreshock, main shock, and aftershock of the Gyeongju earthquakes estimated by the crustal model of single layer of the Korean peninsula without the Conrad discontinuity turns out to be 12.9 km, which is 2.8 km lower than that estimated based on the IASP91 reference model with the Conrad discontinuity. The distribution of the historical and instrumental earthquakes in the Gyeongju area indicates that the Yangsan fault system comprising the main Yangsan fault and its subsidiary faults is a large fracture zone. The epicenters of the Gyeongju earthquakes show that a few faults of the Yangsan fault system are involved in the release of the strain energy accumulated in the area. That the major earthquakes of Gyeongju earthquakes occurred not on the surface but below 10 km depth suggests the necessity of the study of the distribution of deep active faults of the Yangsan fault system. The magnitude of maximum earthquake of the Gyeongju area estimated based on the earthquake data of the area turns out to be 7.3. The recurrence intervals of the earthquakes over magnitudes 5.0, 6.0 and 7.0 based on the earthquake data since 1978, which is the most complete data in the peninsula, are estimated as 80, 670, and 5,900 years, respectively. The September 2016 Gyeongju earthquakes are basically intraplate earthquakes not related to the Great East Japan earthquake of March 11 2011 which is interplate earthquake.

키워드

참고문헌

  1. Chang, T., Chang, C., and Kim, Y., 1993, The geometric analysis of fractures near the Yangsan fault in Eonyang area, J. Korean Inst. Mining Geol., 26, 227-236. (in Korean with English abstract)
  2. Kim, S. J., and Kim, S. G., 1983, A study on the crustal structure of South Korea by using seismic waves, J. Korean Inst. Mining Geol., 16, 51-61. (in Korean with English abstract)
  3. Kim, S. K., 1995, A study on the crustal structure of the Korea Peninsular, J. Geol. Soc. Korea, 31, 393-403. (in Korean with English abstract)
  4. Kyung, J. B., 2010, Paleoseismological study and evaluation of maximum earthquake magnitude along the Yangsan and Ulsan fault zones in the southeastern part of Korea, Geophys. and Geophys. Explor., 13, 187-197. (in Korean with English abstract)
  5. Lee, K., 1979, On crustal structure of the Korean peninsula, J. Geol. Soc. Korea, 15, 253-258.
  6. Lee, K., and Na, S. H., 1983, A study of microearthquake activity of the Yangsan fault, J. Geol. Soc. Korea, 19, 127-135.
  7. Lee, K., and Jin, Y. G., 1991, Segmentation of the Yangsan fault system: Geophysical studies on major faults in the Kyeongsang basin, J. Geol. Soc. Korea, 27, 434-449.
  8. Lee, K., and Lee, J. H., 2003, Short note: magnitude-intensity relation for earthquakes in the Sino-Korean craton, Seism. Res. Lett., 74, 350-352. https://doi.org/10.1785/gssrl.74.3.350
  9. Lee, K., Chung, N. S., and Chung, T. W., 2003, Earthquakes in Korea from 1905 to 1945, Bull. Seism. Soc. Am., 93, 2131-2145. https://doi.org/10.1785/0120020176
  10. Lee, K., and Yang W. S., 2006, Historical earthquakes of Korea, Bull. Seism. Soc. Am., 96, 845-855.
  11. Lee, K., 2015, Seismology for Everybody, Sciencebooks. (in Korean)
  12. Lee, K., 2017, Seismic hazards of the Gyeongju area, Korea, 17th Conference of the Science Council of Asia, June 14-16, Pasay City, Philippine.
  13. Lee, Y. S., Ishikawa, N., and Kim, W. K., 1999, Paleomagnetism of Tertiary rocks on the Korean Peninsula: tectonic implications for the opening of the East Sea (Sea of Japan), Tectonophysics, 304, 131-149. https://doi.org/10.1016/S0040-1951(98)00270-4
  14. Rhie, J., and Kim, S., 2010, Regional moment tensor determination in the southern Korean Peninsula, Geosci. J., 14, 329-333. https://doi.org/10.1007/s12303-010-0038-9
  15. Schwartz, D. P., and Coppersmith, K. J., 1984, Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas faults, J. Geophys. Res., 89, 5681-5698. https://doi.org/10.1029/JB089iB07p05681
  16. Shimazaki, K., 1984, Mid-plate, plate-margin, and plateboundary earthquakes and stress transmission in far east, in A collection of Papers of the International Symposium on Continental Seismicity and Earthquake Prediction (ISCSEP), The Organizing Committee of ISCSEP, Seismological Press, Beijing.
  17. Song, S. G., and Lee, K., 2001, Crustal structure of the Korean peninsula by travel time inversion of local earthquakes, J. Korean Geophys. Soc., 4, 21-33.
  18. Stirling, M. W., and Zuniga, F. R., 2017, Short note, Shape of the magnitude-frequency distribution for the Canterbury earthquake sequence from integration of seismological and geological data, J. Bull. Seism. Soc. Am., 107, 495-500. https://doi.org/10.1785/0120160246
  19. Wells, D. L., and Coppersmith, K. J., 1994, New empirical relationships among magnitude, surface rupture length, rupture width, rupture area, and surface displacement, Bull. Seism. Soc. Am., 84, 974-1062.
  20. Wesnousky, S. G., 1994, The Gutenberg-Richter or characteristic earthquake distribution: Which is it? Bull. Seism. Soc. Am., 84, 1940-1959.
  21. Yoo, H. J., Herrmann, R. B., Cho, K. H., and Lee, K., 2007, Imaging the three-dimensional crust of the Korean peninsula by joint inversion of surface-wave dispersion and teleseismic receiver functions, Bull. Seism. Soc. Am., 97, 1002-1011. https://doi.org/10.1785/0120060134