DOI QR코드

DOI QR Code

Dispersal of Hazardous Substance in a City Environment Based on Weather Conditions and Its Risk Assessment at the Pedestrian Level

기상조건에 따른 도시내 위험물질 확산정보와 보행자환경 위험영향평가

  • Kim, Eun-Ryoung (Weather Information Service Engine project, Hankuk University of Foreign Studies) ;
  • Lee, Gwang-Jin (Weather Information Service Engine project, Hankuk University of Foreign Studies) ;
  • Yi, Chaeyeon (Weather Information Service Engine project, Hankuk University of Foreign Studies)
  • 김은령 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 이광진 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 이채연 (한국외국어대학교 차세대도시농림융합기상사업단)
  • Received : 2017.03.07
  • Accepted : 2017.08.03
  • Published : 2017.08.31

Abstract

In this paper, dispersion scenarios concerning various meteorological conditions and real urban structures were made to estimate the impacts of hazardous substance leakage accidents and to reduce damages. Based on the scenario of the hazardous substance dispersion, the characteristics of the risk in the pedestrian environment were analyzed in Gangnam, Seoul. The scenarios are composed of 48 cases according to the meteorological conditions of wind direction and wind speed. In order to analyze the dispersion characteristics of the hazardous substances, simulations were conducted using a computational fluid dynamic (CFD) model with hydrogen fluoride releases. The validation for the simulated wind was conducted at a specific period, and all the calculated verification indices were within the valid range. As a result of simulated dispersion field at pedestrian level, it was found that the dispersion pattern was influenced by the flow, which was affected by the artificial obstacles. Also, in the case of the weakest wind speed of the inflow, the dispersion of the hazardous substance appeared in the direction of the windward side at the pedestrian level due to the reverse flow occurred at lower layers. Through this study, it can be seen that the artificial structures forming the city have a major impact on the flow formed in urban areas. The proposed approach can be used to simulate the dispersion of the hazardous substances and to assess the risk to pedestrians in the industrial complexes dealing with actual hazardous substances in the future.

본 연구에서는 위험물질 누출 사고로 인한 영향을 예측하고 피해를 줄이기 위한 대응 방안으로 기상장(풍향 풍속)과 실제 도시 구조를 고려한 가상의 사고 시나리오를 구축하였다. 위험물질 확산에 대한 시나리오를 기반으로 서울시 강남 지역을 대상으로 보행자 환경에서의 위험특성을 분석하였다. 풍향과 풍속 조건에 따라 48개의 시나리오를 가정하였으며, 스칼라 물질의 확산 특성을 분석하기 위한 위험물질로써 불화수소를 가정하였다. CFD_NIMR_SNU 모델을 이용하여 모의한 기상장(풍향 풍속) 평가를 실시하여 모든 검증 지수가 유효한 범위 내에 나타남을 보였다. 보행자 고도에서 모의된 확산장 분석 결과, 도시의 인공적 구조에 의해 기상장의 조건에 따라 상세 흐름이 변화하며 위험물질이 확산되는 경향에 영향을 미치는 것을 확인하였다. 또한, 유입류의 풍속이 가장 약한 조건의 경우, 하층에서 유입방향의 역방향으로 흐름이 형성되어 보행자 고도에서의 물질 이동경로가 변화함을 보였다. 본 연구에서는 도시 지역의 난류흐름 형성에 도시의 인공적 구조가 매우 중요한 영향을 미치는 것을 보였다. 본 연구에 사용된 기술은 향후 실제 위험물질을 취급하는 도시 내 산업단지에 확산모의 실험과 보행자 환경에서의 위험성 평가에 유용할 것으로 기대된다.

Keywords

References

  1. Britter RE, Hanna SR. 2003. Flow and dispersion in urban areas. Annu. Rev. Fluid Mech 2003. 35: 469-496. https://doi.org/10.1146/annurev.fluid.35.101101.161147
  2. Castro IP, Apsley DD. 1997. Flow and dispersion over topography: a comparison between numerical and laboratory data for two-dimensional flow. Atmospheric Environment. 31: 893-850. https://doi.org/10.1016/S1352-2310(96)00248-8
  3. Choi HW, Kim DY, Kim J.-J. Kim KY, Woo JH. 2012. Study on Dispersion Characteristics for Fire Scenarios in an Urban Area Using a CFD-WRF Coupled Model. Atmosphere. 22(1): 47-55. https://doi.org/10.14191/Atmos.2012.22.1.047
  4. De Melo AMV, Santos JM, Mavroidis I, Junior NCR. 2012. Modelling of odour dispersion around a pig farm building complex using AERMOD and CALPUFF. Comparison with wind tunnel results. Building and Environment. 56: 8-20. https://doi.org/10.1016/j.buildenv.2012.02.017
  5. Gu SG, Choi IJ, Kim W, Sun ON, Kim SB, Lee YG. 2013. Study on the Distribution of Fluorides in Plants and the Estimation of Ambient Concentration of Hydrogen Fluoride Around the Area of the Accidental Release of Hydrogen Fluoride in Gumi. J. Environ Health Sci. 39: 346-353.
  6. Hanna SR, Brown MJ, Camell FE, Chan ST, Coirier WJ, Hansen OR. Huber AH. Kim S, Reynolds RM. 2006. Detailed simulations of atmospheric flow and dispersion in downtown Manhattan: An application of five computational fluid dynamics models. Bull. Amer. Meteor. Soc. 12: 1713-1726.
  7. Hanna SR, Hansen OR, Dharmavaram S. 2004. FLACS CFD air quality model performance evaluation with Kit Fox, MUST, Prairie Grass, and EMU observations. Atmospheric Environment. 38(28): 4675-4687. https://doi.org/10.1016/j.atmosenv.2004.05.041
  8. Jeong SJ, Park OH. 1999. Development of a New E-$\varepsilon$ turbulence model for analysing the air flow field within an urban street canyon. Journal of Korean Society for Atmospheric Environment. 15(3): 281-289.
  9. Joo HS, Lee YS, Lim OJ, Yoo JM. 2013. A study on the Improvement of Environmental Impact Assessment of Industrial Complexes Based on Risk Assessment of Chemical Leakage Accidents. Korea Environment Institute (KEI). [Korean Literature]
  10. Kim J.-J., Baik J.-J. 2005. An investigation of flow and scalar dispersion in an urban area using a CFD model. Atmosphere. 41: 821-837.
  11. Ko MW, Oh CB, Han YS, Choi BI, Do KH, Kim MB, Kim TH. 2015. Large Eddy Simulation for the Prediction of Unsteady Dispersion Behavior of Hydrogen Fluoride. Journal of the Korean Society of Safety. 30(1): 14-20. https://doi.org/10.14346/JKOSOS.2015.30.1.014
  12. Koh DH, Kim JS, Choi KH. 2014. Defining Area of Damage of 2012 Hydrofluoric Acid Spill Accident in Gumi, Korea. J. Environ Health Sci., 40: 27-37.
  13. Kwon HG, Yang HJ, Yi C, Kim YH, Choi YJ. 2015. Urban climate impact assessment reflecting urban planning scenarios-Connecting green network across the north and south in Seoul. Journal of Environmental Impact Assessment. 24(2): 134-153. https://doi.org/10.14249/eia.2015.24.2.134
  14. Lee CB, Kim JC. 2009. Evaluation of the calpuff model using improved meteorological fields in complex terrain of east sea coast. Journal of Korean Society for Atmospheric Environment. 25(1): 15-25. https://doi.org/10.5572/KOSAE.2009.25.1.015
  15. Lee TH, Park JD, Lee SJ, Bang BS, Kim KP, Kim MS, Park JS. 2015. Characteristics of chemical substance accident in Korea. Korean Journal of Hazardous Materials. 3(1): 37-41
  16. Oke TR. 1988. Street design and urban canopy layer climate. Energy and buildings, 11(1): 103-113. https://doi.org/10.1016/0378-7788(88)90026-6
  17. Patankar SV. 1980. Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York, 197 pp.
  18. Pontiggia M, Landucci G, Busini V, Derudi M, Alba M, Scaioni M, Bonvicini S, Cozzani V, Rota R. 2011. CFD model simulation of LPG dispersion in urban areas. Atmospheric environment. 45(24): 3913-3923. https://doi.org/10.1016/j.atmosenv.2011.04.071
  19. Tartakovsky D, Broday DM, Stern E. 2013. Evaluation of AERMOD and CALPUFF for predicting ambient concentrations of total suspended particulate matter (TSP) emissions from a quarry in complex terrain. Environmental Pollution. 179: 138-145. https://doi.org/10.1016/j.envpol.2013.04.023
  20. Yakhot V, Orszag SA, Thangam S, Gatski TB, Speziable CG. 1992. Development of turbulence models for shear flow by a double expansion technique. Phys. Fluids. 4: 1510-1520. https://doi.org/10.1063/1.858424
  21. Yang HJ, Kim J.-J. 2015. Assessment of Observation Environment for Surface Wind in Urban Areas Using a CFD model. Atmosphere. 25(3): 449-459. https://doi.org/10.14191/Atmos.2015.25.3.449
  22. Yi CY, An SM, Kim KR, Choi YJ, Scherer D. 2012. Improvement of Air Temperature Analysis by Precise Spatial Data on a Local-scale-A Case Study of Eunpyeong New Town in Seoul. Journal of the Korean association of geographic information studies. 15(1): 144-158. https://doi.org/10.11108/kagis.2012.15.1.144
  23. You J, Chung Y.-J. 2014. Case Analysis of the Harmful Chemical Substances’ Spill. FIRE SCIENCE AND ENGINEERING. 28(6): 90-98. https://doi.org/10.7731/KIFSE.2014.28.6.090
  24. Zhou Y, Levy JI, Evans JS, Hammitt JK. 2006. The influence of geographic location on population exposure to emissions from power plants throughout China. Environment International. 32(3): 365-373. https://doi.org/10.1016/j.envint.2005.08.028