DOI QR코드

DOI QR Code

Effects of Dietary Supplementation with Allium hookeri Root on Hepatic Enzyme Contents in Streptozotocin-induced Diabetic Rats

삼채 보충식이가 당뇨흰쥐 간의 항산화효소 함량에 미치는 영향

  • Kim, Myung-Wha (Dept. of Food and Nutrition, Duksung Women's University)
  • 김명화 (덕성여자대학교 식품영양학과)
  • Received : 2017.05.11
  • Accepted : 2017.08.04
  • Published : 2017.08.31

Abstract

The purpose of this study was to examine the effect of Allium hookeri (AH) root on hepatic antioxidative enzyme contents in streptozotocin (STZ)-induced rats. Diabetes mellitus was induced in male Sprague-Dawley rats through injection of STZ dissolved in citrate buffer into tail veins at a dose of 45 mg/kg body weight. Sprague-Dawley rats were fed an AIN-93 recommended diet, and the experimental groups were fed a modified diet containing 5% and 10% of AH root powder for 4 weeks. The experimental groups were divided into four groups: a normal control (N-control), STZ-control, STZ-AH 5%, and STZ-AH 10% supplemented groups. The STZ-AH 5% group showed a significant increase in liver glycogen compared to the STZ-control group. Muscle glycogen and liver protein contents significantly increased in the AH-supplemented groups compared to the STZ-control group. The liver malondialdehyde content of the AH-supplemented group was significantly lower than that of the STZ-control group. Xanthine oxidase content was significantly reduced in all experimental groups. Glutathione-S-transferase content was significantly elevated in the AH-treated groups compared to the STZ-control group. Superoxide dismutase content was not significantly different among the experimental groups. Catalase content was significantly higher in the STZ-AH 10% group compared to the STZ-control group. These results show that supplementation with AH root may be useful for diabetic therapy and damage from oxidative stress.

본 연구는 streptozotocin(STZ)으로 당뇨를 유발시킨 Sprague-Dawley계 수컷 흰쥐에게 4주간 삼채(Allium hookeri; AH) 뿌리를 식이에 보충한 정상대조군 normal-control(N-control)과 STZ-control, STZ-AH 5%와 STZ-AH 10% 첨가군을 당뇨실험군으로 하여 삼채의 잠재적인 항산화 식재료로써의 활용성을 확인하였다. 해당식이를 4주간 공급한 후, 간과 근육의 글리코겐, 간의 단백질과 MDA, 간의 세포질에서 XOD, GST, SOD, CAT, GR 및 GPX의 항산화효소 함량을 분석하여 다음과 같은 결과를 얻었다. 간의 글리코겐 함량은 N-control에 비해 STZ-control에서 유의적으로 낮았고, 당뇨실험군에서는 STZ-AH 5%에서 STZ-control보다 유의적으로 높은 함량 차이를 보였다. 근육의 글리코겐 함량은 N-control에 비해 STZ-control에서 유의적으로 낮았고, STZ-control에 비해 STZ-AH 5%와 STZ-AH 10%에서 유의적으로 높은 차이었다. 간의 단백질 함량은 N-control과 STZ-control에서는 유의적인 차이를 보이지 않았으나, STZ-control보다 STZ-AH 첨가군 모두에서 유의적으로 높았다. 간의 MDA 함량은 N-control보다 STZ-control에서 유의적으로 높은 함량이었고, STZ-control보다 STZ-AH 첨가군 모두에서 낮은 함량이었다. 간의 세포질에서 측정한 XOD 함량은 N-control과 STZ-control은 유의적인 차이를 보였고, 당뇨실험군에서는 STZ-control보다 STZ-AH 5%와 STZ-AH 10% 첨가군 모두에서 유의적으로 낮은 함량 차이를 보였다. GST 함량은 N-control에 비해 STZ-control에서는 유의적으로 낮았고, STZ-control 보다 STZ-AH 5%와 STZ-AH 10% 첨가군 모두에서 유의적으로 높은 함량이었다. SOD는 N-control과 STZ-control에서 유의적인 함량 차이를 보였으나, 당뇨실험군 간에는 STZ-control과 유의성을 보이지 않았다. CAT는 N-control과 STZ-control에서 유의적인 차이는 아니었으나, STZ-control과 비교하여 STZ-AH 10%에서 유의적으로 높은 함량 차이를 보였다. GR과 GPX 함량에서는 유의적인 차이를 보이지 않았다. 이상의 연구결과, 삼채뿌리 분말을 식이로 첨가하였을 때 당뇨시 간과 근육의 글리코겐과 간의 단백질 함량이 높아졌고, MDA 함량은 낮아졌다. 효소 함량은 XOD에서 낮아졌고, CAT와 GST에서 높아지는 경향이었다. 삼채는 STZ에 의한 포도당의 과부하에 의해 증가된 과산화물의 생성억제와 조직 내 세포의 산화적 스트레스 감소작용으로 생체내 항산화 방어력을 증가시킬 수 있으며, 당뇨 예방 및 치료를 위한 식사요법에 이용 가능한 식품으로 사료된다.

Keywords

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105: 121-126.
  2. Atalay M, Laaksonen DE, Niskanen L, Uusiyupa M, Hanninen O, Sen CK (1997) Altered antioxidant enzyme defence in insulin-dependent diabetic men with increased resting and exercise-induced oxidative stress. Acta Physiol Scand 161(2): 195-201. https://doi.org/10.1046/j.1365-201X.1997.00200.x
  3. Ayam VS (2011) Allium hookeri, Thw. Enum. a lesser known terrestrial perennial herb used as food and its ethnobotanical relevance in Manipur. AJFAND 11(6): 5389-5412.
  4. Baynes JW (1991) Role of oxidative stress in the development of complication in diabetes. Diabetes 40(4): 405-421. https://doi.org/10.2337/diabetes.40.4.405
  5. Bergmeyer HU, Gawehn K, Grassl M (1974) In The Methods of Enzymatic Analysis (Bergmeter HU ed.). Academic Press Inc 1(2): 521-522.
  6. Bikkad MD, Somwanshi SD, Ghuge SH, Nagane NS (2014) Oxidative stress in type II diabetes mellitus. Biomed Res 25(1): 84-87.
  7. Borborah K, Dutta B, Borthakur SK (2014) Traditional uses of Allium L. species from North East India with special reference to their pharmacological activities. Am J Phytomed Clin Ther 2(8): 1037-1051.
  8. Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43: 83-116. https://doi.org/10.1146/annurev.pp.43.060192.000503
  9. Foretz M, Ancellin N, Andreelli F, Saintillan Y, Grondin P, Kahn A, Thorens B, Vaulont S, Viollet B (2005) Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 54(5): 1331-1339. https://doi.org/10.2337/diabetes.54.5.1331
  10. Frances DE, Ronco MT, Monti JA, Ingaramo PI, Pisani GB, Parody JP, Pellegrino JM, Sanz PM, Carrillo MC, Carnovale CE (2010) Hyperglycemia induces apoptosis in rat liver through the increase of hydroxyl radical: New insights into the insulin effect. J Endocrinol 205(2): 187-200. https://doi.org/10.1677/JOE-09-0462
  11. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases: The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22): 7130-7139.
  12. Hadjzadeh MA, Rajaei Z, Khodaei E, Malek M, Ghanbari H (2017) Rheum turkestanicum rhizomes possess anti-hypertriglyceridemic, but not hypoglycemic or hepatoprotective effect in experimental diabetes. Avicenna J Phytomed 7(1): 1-9. https://doi.org/10.4103/2231-0770.197506
  13. Hamissou M, Smith AC, Carter Jr JE, Triplett II JK (2013) Antioxidative properties of bitter gourd(Momordica charantia) and zucchini(Cucurbita pepo). Emir J Food Agric 25 (9): 641-647. https://doi.org/10.9755/ejfa.v25i9.15978
  14. Hassid WZ, Abraham X (1957) Chemical procedures for analysis of polysaccharides. In Methods in Enzymology. Academic press, New York, USA 3: 34-50.
  15. Jang YS, Ahn HS, Kim HR (1998) Effects of vitamin E supplementation on the lipid peroxides and activities of antioxidative enzymes in the pancreas of diabetic KK mice. Kor J Nutr 31(2): 153-158.
  16. Jun HI, Park SY, Jeong DY, Song GS, Kim YS (2014) Quality properties of yogurt added with hot water concentrates from Allium hookeri root. J Kor Soc Food Sci Nutr 43(9): 1415-1422. https://doi.org/10.3746/jkfn.2014.43.9.1415
  17. Kamalakkanan N, Rajadurai M, Prince PS (2003) Effect of Aegle marmelos fruits on normal and streptozotocin-diabetic wistar rats. J Med Food 6(2): 93-98. https://doi.org/10.1089/109662003322233486
  18. Kim JS, Heo JS, Choi JW, Kim GD, Sohn KH (2015) Allium hookeri extract improves type 2 diabetes mellitus in C57BL/KSJ db/db obese mouse via regulation of hepatic lipogenesis and glucose metabolism. J Life Sci 25(10): 1081-1090. https://doi.org/10.5352/JLS.2015.25.10.1081
  19. Kim KH, Kim HJ, Byun MW, Yook HS (2012) Antioxidant and antimicrobial activities of ethanol extract from six vegetables containing different sulfur compounds. J Kor Soc Food Sci Nutr 41(5): 577-583. https://doi.org/10.3746/jkfn.2012.41.5.577
  20. Kim MW (2013) Effect of Sea Buckthorn leaves on hepatic enzyme levels in streptozotocin induced diabetic rats. J Kor Soc Food Sci Nutr 42(1): 40-45. https://doi.org/10.3746/jkfn.2013.42.1.040
  21. Kim MW (2016) Effect of Allium hookeri root on plasma blood glucose and fat profile levels in streptozotocin-induced diabetic rats. J East Asian Soc Diet Life 26(6): 481-490. https://doi.org/10.17495/easdl.2016.12.26.6.481
  22. Kubola J, Siriamornpun S (2008) Phenolic contents and antioxidant activities of bitter gourd(Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chem 110(2008): 881-890. https://doi.org/10.1016/j.foodchem.2008.02.076
  23. Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Comm 71(4): 952-958. https://doi.org/10.1016/0006-291X(76)90747-6
  24. Lee EB, Kim JH, Yang JH, Kim YS, Jun YI, Ki BH, Lee SH, Kim YS, Han SC, Kim DK (2015) Antioxidant and longevity properties of the root of Allium hookeri in Caenorhabditis elegans. Kor J Pharmacogn 46(3): 234-242.
  25. Lee KW, Kim YS, Park PJ, Jeong JH (2014) Comparison of effect of water and ethanolic extract from roots and leaves of Allium hookeri. J Kor Soc Food Sci Nutr 43(12): 1808-1816. https://doi.org/10.3746/jkfn.2014.43.12.1808
  26. Lee SH, Kim NS, Choi BK, Jang HH, Kim JB, Lee YM, Kim DK, Lee CH, Kim YS, Yang JH, Kim YS, Kim HJ, Lee SH (2015) Effects of Allium hookeri on lipid metabolism in type II diabetic mice. Kor J Pharmacogn 46(2): 148-153.
  27. Lombardo YB, Serdikoff C, Thamotharan M, Paul HS, Adibi SA (1999) Inverse alterations of BCKA dehydrogenase activity in cardiac and skeletal muscles of diabetic rats. Am J Physiol 277(4 Pt 1): E685-E692.
  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193(1): 265-275.
  29. Maklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3): 467-474.
  30. Martin-Gallan P, Carrascosa A, Gussinye M, Dominguez C (2003) Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radic Biol Med 34 (12): 1563-1574. https://doi.org/10.1016/S0891-5849(03)00185-0
  31. Mavis RD, Stellwagen E (1968) Purification and subunit structure of glutathione reductase from baker's yeast. J Biol Chem 243(4): 809-814.
  32. Mihara M, Uchiyama M (1978) Determination of malondialdehyde precursor in issue by thiobarbituric acid test. Anal Biochem 86(1): 271-278. https://doi.org/10.1016/0003-2697(78)90342-1
  33. Moore CJ, Shao CH, Nagai R, Kutty S, Singh J, Bidasee KR (2013) Malondialdehyde and 4-hydroxynonenal adducts are not formed on cardiac ryanodine receptor(RyR2) and sarco (endo) plasmic reticulum $Ca^{2+}$-ATPase(SERCA2) in diabetes. Mol Cell Bioche 376(1-2): 121-135. https://doi.org/10.1007/s11010-013-1558-1
  34. Oyenihi OR, Brooks NL, Oguntibeju OO (2015) Effects of kolaviron on hepatic oxidative stress in streptozotocin induced diabetes. BMC Complement Altern Med 15(1): 236-242. https://doi.org/10.1186/s12906-015-0760-y
  35. Ou SY, Jackson GM, Jiao X, Chen J, Wu JZ, Huang XS (2007) Protection against oxidative stress in diabetic rats by wheat bran feruloyl oligosaccharides. J Agric Food Chem 55(8): 3191-3195. https://doi.org/10.1021/jf063310v
  36. Park JY, Yoon KY (2014) Comparison of the nutrient composition and quality of the root of Allium hookeri grown in Korea and Myanmar. Kor J Food Sci Technol 46(5): 544-548. https://doi.org/10.9721/KJFST.2014.46.5.544
  37. Park SA, Choi MS, Jung UJ, Kim MJ, Kim DJ, Park HM, Park YB, Lee MK (2006) Eucommia ulmoides oliver leaf extract increases endogenous antioxidant activity in type 2 diabetic mice. J Med Food 9(4): 474-479. https://doi.org/10.1089/jmf.2006.9.474
  38. Rahimi-Madiseh M, Heidarian E, Kheiri S, Rafieian-Kopaei M (2017) Effect of hydroalcoholic Allium ampeloprasum extract on oxidative stress, diabetes mellitus and dyslipidemia in alloxan-induced diabetic rats. Biomed Pharmacother 86: 363-367. https://doi.org/10.1016/j.biopha.2016.12.028
  39. Raman BV, Krishna NV, Rao NB, Saradhi PM, Rao BMV (2012) Plants with antidiabetic activities and their medicinal values. Int Res J Pharm 3(3): 11-15.
  40. Reeves PG (1997) Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 127(5): 838-841. https://doi.org/10.1093/jn/127.5.838S
  41. Rhee SJ, Choe WK, Cha BK, Yang JA, Kim KY (1996) Effects of vitamin E and selenium on the antioxidative defense system in streptozotocin-induced diabetic rats. Kor J Nutr 29(1): 22-31.
  42. Rhyu DY, Park SH (2013) Characterization of alkyl thiosulfinate in Allium hookeri root using HPLC-ESI-MS. J Kor Soc Appl Biol Chem 56(4): 457-459. https://doi.org/10.1007/s13765-013-3069-x
  43. Roh SS, Kwon OJ, Yang JH, Kim YS, Lee SH, Jin JS, Jeon YD, Yokozawa T, Kim HJ (2016) Allium hookeri root protects oxidative stress-induced inflammatory responses and $\beta$-cell damage in pancreas of streptozotocin-induced diabetic rats. BMC Complementary Alter Med 16(1): 63-72. https://doi.org/10.1186/s12906-016-1032-1
  44. Roslan J, Giribabu N, Karim K, Salleh N (2017) Quercetin ameliorates oxidative stress, inflammation and apoptosis in the heart of streptozotocin-nicotinamide-induced adult male diabetic rats. Biomed Pharmacother 86: 570-582. https://doi.org/10.1016/j.biopha.2016.12.044
  45. Saggu S, Kumar R (2008) Effect of sea buckthorn leaf extracts on circulating energy fuel, lipid peroxidation and antioxidant parameters in rats during exposure to cold, hypoxia and restraint(C-H-R) stress and post stress recovery. Phytomed 15(6-7): 437-446. https://doi.org/10.1016/j.phymed.2007.11.002
  46. Sexton WL (1994) Skeletal muscle vascular transport capacity in diabetic rats. Diabetes 43(2): 225-231. https://doi.org/10.2337/diab.43.2.225
  47. Sharma M, Gupta S, Singh K, Mehndiratta M, Gautam A, Kalra OP, Shukla R, Gambhir JK (2016) Association of glutathione-S-transferase with patients of type 2 diabetes mellitus with and without nephropathy. Diabetes Metab Syndr 10(4): 194-197. https://doi.org/10.1016/j.dsx.2016.06.006
  48. Suryakumar G, Gupta A (2011) Medicinal and therapeutic potential of sea buckthorn(Hippophae rhamnoides L.). J Ethnopharmacol 138(2): 268-278. https://doi.org/10.1016/j.jep.2011.09.024
  49. Ting HC, Hsu YW, Tsai CF, Lu FJ, Chou MC, Chen WK (2011) The in vitro and in vivo antioxidant properties of seabuckthorn(Hippophae rhamnoides L.) seed oil. Food Chem 125(2): 652-659. https://doi.org/10.1016/j.foodchem.2010.09.057
  50. Tripathi UN, Chandra D (2009) The plant extracts of Momordica charantia and Trigonella foenum graecum have antioxidant and anti-hyperglycemic properties for cardiac tissue during diabetes mellitus. Oxid Med Cell Longev 2(5): 290-296. https://doi.org/10.4161/oxim.2.5.9529
  51. Ullah A, Khan A, Khan I (2016) Diabetes mellitus and oxidative stress: A concise review. Saudi Pharm J 24(5): 547-553. https://doi.org/10.1016/j.jsps.2015.03.013
  52. Wang X, Lei XG, Wang J (2014) Malondialdehyde regulates glucose-stimulated insulin secretion in murine islets via TCF7L2-dependent Wnt signaling pathway. Mol Cell Endocrinol 382(1): 8-16. https://doi.org/10.1016/j.mce.2013.09.003
  53. Wolff SP, Dean RT (1987) Glucose autoxidation and protein modification. The potential role of autoxidative glycosylation in diabetes. Biochem J 245(1): 243-250. https://doi.org/10.1042/bj2450243
  54. Yang HS, Choi YJ, Jin HY, Lee SC, Huh CK (2016) Effects of Allium hookeri root water extracts on inhibition of adipogenesis and GLUT-4 expression in 3T3-L1 adipocytes. Food Sci Biotechnol 25(2): 615-621. https://doi.org/10.1007/s10068-016-0086-7
  55. Yoon JH, Yoon SJ (2013) Quantifying burden of disease to measure population health in Korea. J Kor Med Sci 31 (Suppl 2): S101-S107.

Cited by

  1. 삼채 뿌리 보충식이가 당뇨 흰쥐의 조직에서 항산화효소 활성도에 미치는 영향 vol.28, pp.3, 2017, https://doi.org/10.17495/easdl.2018.6.28.3.179