DOI QR코드

DOI QR Code

In-situ TiO2 Formation and Performance on Ceramic Membranes in Photocatalytic Membrane Reactor

광촉매 반응기용 세라믹 막에의 TiO2 층 형성과 성능평가

  • Ahmad, Rizwan (Department of Environmental Engineering, Inha University) ;
  • Kim, Jin Kyu (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jeonghwan (Department of Environmental Engineering, Inha University)
  • Received : 2017.06.23
  • Accepted : 2017.08.28
  • Published : 2017.08.31

Abstract

Fabricating photocatalytic composite membrane with a mesoporous and tailored morphological structure would have significant implication for environmental remediation. In this study, we reported hybrid $TiO_2$ immobilized photocatalytic membrane and its application for the treatment of dye solution. Photocatalytic film with high porosity and homogeneity was fabricated by graft copolymer as polymer template. Hybridization of membrane filtration with photocatalysis was successfully achieved by photocatalytic membrane reactor developed. Result showed that membrane permeability was significantly reduced after immobilizing the $TiO_2$ film on bare $Al_2O_3$ support. The membrane characterization indicated that well organized $TiO_2$ film was successfully formed on $Al_2O_3$ support. Benefiting from the controlled morphology of $TiO_2$ film, the composite membrane exhibited almost complete degradation of organic dye within 5 h of filtration under UV illumination. Langmuir-Hinshelwood model explained degradation of organic dye. First-order rate constant was approximately six times with $TiO_2$ immobilized composite ceramic membrane, higher than the one with the bare $Al_2O_3$ support (0.0081 vs. $0.0013min^{-1}$).

메조포러스 공극구조를 갖는 광촉매 멤브레인은 다양한 환경기술에 적용될 수 있다. 본 연구에서는 $TiO_2$ 층을 형성시킨 광촉매 반응기용 세라믹 멤브레인을 개발하고 이를 염색용액 처리에 적용하였다. 높은 공극률과 균질성을 지닌 $TiO_2$ 광촉매층을 그라프트 공중합체를 사용하여 제조하였다. 멤브레인은 광촉매 반응기와 멤브레인 여과를 결합시킨 하이브리드 광촉매 반응기에 성공적으로 적용하였다. 실험결과 정렬된 구조의 $TiO_2$ 층이 $Al_2O_3$ 지지체에 형성되었다. $TiO_2$ 층 형성 후 제조된 세라믹 분리막의 순수 투과도는 형성된 광촉매 층 저항으로 감소하였다. 정렬된 구조의 $TiO_2$ 층은 UV 결합 시 5시간 안에 완벽한 염색용액 분해를 달성시킬 수 있었다. 광촉매 멤브레인의 염색용액 분해는 Langmuir-Hinshelwood 흡착 모델로 잘 설명할 수 있었다. 또한 $TiO_2$ 층이 고정화된 세라믹 멤브레인의 model Congo Red에 대한 1차 속도상수는 $Al_2O_3$ 지지체 단독인 경우에 비해 약 6배 정도 큰 값을 나타내었다(0.0081 vs. $0.0013min^{-1}$).

Keywords

References

  1. J. Guo, A. Sotto, A. Martin, and J. Kim, "Preparation and characterization of polyethersulfone mixed matrix membranes embedded with Ti- or Zr-incorporated SBA-15 materials", J. Ind. Eng. Chem., 45, 257 (2017). https://doi.org/10.1016/j.jiec.2016.09.033
  2. M. Aslam, A. Charfi, G. Lesage, M. Heran, and J. Kim, "Membrane bioreactors for wastewater treatment: A review of mechanical cleaning by scouring agents to control membrane fouling", Chem. Eng. J., 307, 897 (2017). https://doi.org/10.1016/j.cej.2016.08.144
  3. H. Zhao, H. Li, H. Yu, H. Chang, X. Quan, and S. Chen, "CNTs-$TiO_2$/$Al_2O_3$ composite membrane with a photocatalytic function: Fabrication and energetic performance in water treatment", Sep. Purif. Technol., 116, 360 (2013). https://doi.org/10.1016/j.seppur.2013.06.007
  4. H. Zhang, X. Quan, S. Chen, and H. Zhao, "Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability", Environ. Sci. Technol., 40, 6104 (2006). https://doi.org/10.1021/es060092d
  5. N. Ma, Y. Zhang, X. Quan, X. Fan, and H. Zhao, "Performing a microfiltration integrated with photocatalysis using an Ag-$TiO_2$/HAP/$Al_2O_3$ composite membrane for water treatment: Evaluating effectiveness for humic acid removal and anti-fouling properties", Water Res., 44, 6104 (2010). https://doi.org/10.1016/j.watres.2010.06.068
  6. D. Darowna, R. Wrobel, A. W. Morawski, and S. Mozia, "The influence of feed composition on fouling and stability of a polyethersulfone ultrafiltration membrane in a photocatalytic membrane reactor", Chem. Eng. J., 310, 360 (2017). https://doi.org/10.1016/j.cej.2016.06.122
  7. R. Ahmad, Z. Ahmad, A. U. Khan, N. R. Mastoi, M. Aslam, and J. Kim, "Photocatalytic systems as an advanced environmental remediation: Recent developments, limitations and new avenues for applications", J. Environ. Chem. Eng., 4, 4143 (2016). https://doi.org/10.1016/j.jece.2016.09.009
  8. M. Hernandez-Zamora, F. Martinez-Jeronimo, E. Cristiani-Urbina, and R. O. Canizares-Villanueva, "Congo red dye affects survival and reproduction in the cladoceran Ceriodaphnia dubia. Effects of direct and dietary exposure", Ecotoxicology, 25, 1832 (2016). https://doi.org/10.1007/s10646-016-1731-x
  9. S. Rouf, M. Nagapadma, and R. R. Rao, "Removal of harmful textile dye Congo red from aqueous solution using chitosan and chitosan beads modified with CTAB", Int. J. Eng. Res. Appl., 5, 75 (2015).
  10. P. Wang, A. G. Fane, and T.-T. Lim, "Evaluation of a submerged membrane vis-LED photoreactor (sMPR) for carbamazepine degradation and $TiO_2$ separation", Chem. Eng. J., 215, 240 (2013).
  11. X. Zhang, D. K. Wang, and J. C. Diniz da Costa, "Recent progresses on fabrication of photocatalytic membranes for water treatment", Catal. Today, 230, 47 (2014). https://doi.org/10.1016/j.cattod.2013.11.019
  12. C. P. Athanasekou, N. G. Moustakas, S. Morales-Torres, L. M. Pastrana-Martinez, J. L. Figueiredo, J. L. Faria, A. M. T. Silva, J. M. Dona-Rodriguez, G. E. Romanos, and P. Falaras, "Ceramic photocatalytic membranes for water filtration under UV and visible light", Appl. Catal. B Environ., 178, 12 (2015). https://doi.org/10.1016/j.apcatb.2014.11.021
  13. R. Ahmad, J. K. Kim, J. H. Kim, and J. Kim, "Well-organized, mesoporous nanocrystalline $TiO_2$ on alumina membranes with hierarchical architecture: Antifouling and photocatalytic activities", Cataly. Today, 282, 2 (2017). https://doi.org/10.1016/j.cattod.2016.03.051
  14. S. K. Papageorgiou, F. K. Katsaros, E. P. Favvas, G. E. Romanos, C. P. Athanasekou, K. G. Beltsios, O. I. Tzialla, and P. Falaras, "Alginate fibers as photocatalyst immobilizing agents applied in hybrid photocatalytic/ultrafiltration water treatment processes", Water Res., 46, 1858 (2012). https://doi.org/10.1016/j.watres.2012.01.005
  15. R. Goei and T.-T. Lim, "Asymmetric $TiO_2$ hybrid photocatalytic ceramic membrane with porosity gradient: Effect of structure directing agent on the resulting membranes architecture and performances", Ceram. Int., 40, 6747 (2014). https://doi.org/10.1016/j.ceramint.2013.11.137
  16. N. Ma, X. Fan, X. Quan, and Y. Zhang, "Ag-$TiO_2$/HAP/$Al_2O_3$ bioceramic composite membrane: Fabrication, characterization and bactericidal activity", J. Membr. Sci., 336, 109 (2009). https://doi.org/10.1016/j.memsci.2009.03.018
  17. W.-Y. Wang, A. Irawan, and Y. Ku, "Photocatalytic degradation of Acid Red 4 using a titanium dioxide membrane supported on a porous ceramic tube", Water Res., 42, 4725 (2008). https://doi.org/10.1016/j.watres.2008.08.021
  18. T. Zhang, Y. Wang, J. Ng, and D. D. Sun, "A free-standing, hybrid $TiO_2$/K-OMS-2 hierarchical nanofibrous membrane with high photocatalytic activity for concurrent membrane filtration applications", RSC Adv., 2, 3638 (2012). https://doi.org/10.1039/c2ra00908k
  19. H. Choi, E. Stathatos, and D. D. Dionysiou, "Sol-gelpreparation of mesoporous photocatalytic $TiO_2$ films and $TiO_2$/$Al_2O_3$ composite membranes for environmental applications", Appl. Catal. B Environ., 63, 60 (2006). https://doi.org/10.1016/j.apcatb.2005.09.012
  20. X. Wang, S. H. Davies, and S. J. Masten, "Analysis of energy costs for catalytic ozone membrane filtration", Sep. Purif. Technol., 186, 182 (2017). https://doi.org/10.1016/j.seppur.2017.04.055
  21. A. Alem, H. Sarpoolaky, and M. Keshmiri, "Titania ultrafiltration membrane: Preparation, characterization and photocatalytic activity", J. Eur. Ceram. Soc., 29, 629 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.07.003
  22. D. Kamel, A. Sihem, C. Halima, and S. Tahar, "Decolourization process of an azoique dye (Congo red) by photochemical methods in homogeneous medium", Desalination, 247, 412 (2009). https://doi.org/10.1016/j.desal.2009.02.052
  23. T. Tsuru, T. Kan-no, T. Yoshioka, and M. Asaeda, "A photocatalytic membrane reactor for VOC decomposition using Pt-modified titanium oxide porous membranes", J. Membr. Sci., 280, 156 (2006). https://doi.org/10.1016/j.memsci.2006.01.008
  24. M. Lomora, C. DRAGHICI, and A. ENESCA, "Intermediary compounds in advanced oxidation processes for wastewater treatment", Eng. Sci., 4, 52 (2011).
  25. S. Erdemoglu, S. K. Aksu, F. Sayilkan, B. Izgi, M. Asilturk, H. Sayilkan, F. Frimmel, and S. Gucer, "Photocatalytic degradation of Congo Red by hydrothermally synthesized nanocrystalline $TiO_2$ and identification of degradation products by LC-MS", J. Hazard. Mater., 155, 469 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.087
  26. R. Ahmad, J. K. Kim, J. H. Kim, and J. Kim, "Effect of polymer template on structure and membrane fouling of $TiO_2$/$Al_2O_3$ composite membranes for wastewater treatment", J. Ind. Eng. Chem., DOI: 10.1016/j.jiec. 2017.08.007.
  27. R. Zhang, X. Wang, J. Song, Y. Si, X. Zhuang, J. Yu, and B. Ding, "In situ synthesis of flexible hierarchical $TiO_2$ nanofibrous membranes with enhanced photocatalytic activity", J. Mater. Chem. A, 3, 22136 (2015). https://doi.org/10.1039/C5TA05442G
  28. J. Mendret, M. Hatat-Fraile, M. Rivallin, and S. Brosillon, "Hydrophilic composite membranes for simultaneous separation and photocatalytic degradation of organic pollutants", Sep. Purif. Technol., 111, 9 (2013). https://doi.org/10.1016/j.seppur.2013.03.030