DOI QR코드

DOI QR Code

DEM Simulation on the Initiation and Development of Road Subsidence

개별요소법을 활용한 도로함몰 발생과 전개거동 예측

  • 김연호 (단국대학교 토목환경공학과) ;
  • 박성완 (단국대학교 토목환경공학과)
  • Received : 2017.03.31
  • Accepted : 2017.07.07
  • Published : 2017.07.31

Abstract

Road subsidence, frequently occurring in urban areas, is caused by collapsing of surface layer due to underground cavities followed by a loss of soils. To better understand this phenomenon, the mechanism of cavity formation should be identified firstly. Two kinds of possible subsidence mechanisms were established through previous case studies and the numerical analyses based on Distinct Element Method were conducted for each of these mechanisms. It was confirmed that particle loss and surface settlement can develop differently depending on slit size, void ratio, and particle shape among the various factors influencing the road subsidence. The result demonstrated that the effects of varying cavity diameter and depth could be quantified as a damage chart.

최근 도시지역에서 빈번하게 발생하는 도로함몰은 지하에 생성된 동공으로 인해 지표면이 붕괴되는 현상을 의미한다. 지하 공간에서 동공 생성 과정과 생성된 동공이 도로함몰로 이어지는 현상을 이해하기 위해서는 동공의 형성 메커니즘을 명확히 이해할 필요가 있다. 따라서 본 연구에서는 실제 사례와 여러 모델 시험 결과를 분석하여 두 가지 가능한 메커니즘을 제시하였으며 각 메커니즘에 대해 개별요소법 기반의 수치해석 시뮬레이션을 수행하였다. 특히, 도로함몰 영향인자 중 토사 유출구의 크기와 지반의 간극비, 지반 구성 입자 형상의 영향을 확인하기 위한 수치해석을 통해 유출구 특성과 지반 조건에 따라 입자 손실과 지표 침하가 다르게 발생할 수 있음을 확인하였다. 또한, 불연속 침하 해석 결과로 본 연구에서 제시한 도표를 통해 동공의 지름과 심도를 통해 지반의 포화 시 거동을 예측할 수 있다.

Keywords

References

  1. Choi, S. K., Back, S. H., An, J. B., and Kwon, T. H. (2016), "Geotechnical Investigation on Causes and Mitigation of Ground Subsidence during Underground Structure Construction", Journal of Korean Tunnelling and Underground Space Association, Vol.18, No.2, pp.143-154 (in Korean with English abstract). https://doi.org/10.9711/KTAJ.2016.18.2.143
  2. Choi, S. O., Jeon, Y. S., Park, E. S., Jung, Y. B., and Chun, D. S. (2005), "Analysis of Subsidence Mechanism and Development of Evaluation Program", Journal of Korean Society for Rock Mechanics, Vol.15, No.3, pp.195-212 (in Korean with English abstract).
  3. Hewage, I. and Renuka, S. (2012), "Evaluation of Ground Loosening behavior and Mechanical Properties of Loosened Sand Associated with Underground Cavities", Master of Engineering Thesis, the University of Tokyo.
  4. Kuwano, R., Horii, T., Kohashi, H., and Yamauchi, K. (2006-A), "Defects of Sewer Pipes Causing Cave-in's in the Road", Proc. 5th International symposium on new technologies for urban safety of mega cities in Asia, Phuket, No.H63.
  5. Kuwano, R., Kohata, Y., and Sato, M. (2012), "A Case Study of Ground Cave-in due to Large Scale Subsurface Erosion in Old Land Fill", ICSE 6, Paris, pp.265-271.
  6. Kweon, G. C., Kim, S. L., and Hong, S. W. (2016), "Basic Study on Mechanism of Cave-in in Road through Laboratory Model Tests", International Journal of Highway Engineering, Vol.18, No.5, pp.11-19 (in Korean with English abstract). https://doi.org/10.7855/IJHE.2016.18.5.011
  7. Lee, D. Y. and Cho, N. K. (2016), "Understanding of Subsurface Cavity Mechanism due to the Deterioration of Buried Pipe", Journal of the Korean Geotechnical Society, Vol.32, No.12, pp. 33-43 (in Korean with English abstract). https://doi.org/10.7843/kgs.2016.32.12.33
  8. Moon, C. Y. (2014), "A Study on Displacement of Tunnel in the Brittel Fracture Zone under Excavation Constriction", Journal of the Korean Geo-Environmental Society, Vol.15, No.2, pp.45-52 (in Korean with English abstract).
  9. Park, H. M., Park, H. S., and Park, S. W. (2016), "Mechanical Evaluation of Compacted Granular Materials Considering Particle Size Distribution", Journal of the Korean Geotechnical Society, Vol.32, No.1, pp.45-53 (in Korean with English abstract). https://doi.org/10.7843/KGS.2016.32.1.45
  10. Seoul City (2014), "Special Control Measures for Cave-in in Road" (in Korean).
  11. Seoul City (2016), "Seoul City Report Material" (in Korean).
  12. Sreng, S., Ueno, K., Mochizuki, A., and Kuroyama, Y. (2003), "Formation of Under-road Cavity due to Submergence and Submersion Resistance Characteristics of Backfill Materials", Proceedings of The Sino-Japanese on Geotechnical Engineering, Tsinghua University Press pp.221-228.
  13. Thevanayagam, S., Kanagalingam, T. and Shenthan, T. (2003), "Role of Intergranular Contacts on Mechanisms Causing Liquefaction and Slope Failures in Silty Sands", Final Report. USGS Award No. 01HQGR0032 and 99HQGR0021, US Geological Survey, Department of Interior, USA.
  14. Tsuji, Y., Kawaguchi, T., and Tanaka, T. (1993), "Discrete Particle Simulation of Two-dimensional Fluidized Bed", Powder technology, Vol.77, No.1, pp.79-87. https://doi.org/10.1016/0032-5910(93)85010-7

Cited by

  1. A Study of the Application and the Limitations of GPR Investigation on Underground Survey of the Korean Expressways vol.13, pp.9, 2017, https://doi.org/10.3390/rs13091805