

www.kips.or.kr Copyright© 2017 KIPS

Cloud Computing to Improve JavaScript Processing
Efficiency of Mobile Applications

Daewon Kim*

Abstract
The burgeoning distribution of smartphone web applications based on various mobile environments is
increasingly focusing on the performance of mobile applications implemented by JavaScript and HTML5
(Hyper Text Markup Language 5). If application software has a simple functional processing structure, then
the problem is benign. However, browser loads are becoming more burdensome as the amount of JavaScript
processing continues to increase. Processing time and capacity of the JavaScript in current mobile browsers
are limited. As a solution, the Web Worker is designed to implement multi-threading. However, it cannot
guarantee the computing ability as a native application on mobile devices, and is not sufficient to improve
processing speed. The method proposed in this research overcomes the limitation of resources as a mobile
client and guarantees performance by native application software by providing high computing service. It
shifts the JavaScript process of a mobile device on to a cloud-based computer server. A performance
evaluation experiment revealed the proposed algorithm to be up to 6 times faster in computing speed
compared to the existing mobile browser’s JavaScript process, and 3 to 6 times faster than Web Worker. In
addition, memory usage was also less than the existing technology.

Keywords
Cloud, HTML5, JavaScript, Mobile

1. Introduction

A variety of mobile services is emerging in response to the explosive global popularity of
smartphones. The mobile application market has evolved from a closed pattern of operations run by
existing telecommunications operators to an open pattern that supports entrepreneurial general and
web-based applications. This change has laid the groundwork for the rapid expansion of mobile
application development and market size, and increased accessibility to information and services
offered through various mobile applications. The current smartphone application environments are
divided into several markets. The Wholesale Application Community (WAC) joined the Group Special
Mobile Association (GSMA) in July 2012; the latter association targets the number of mobile phone
users of the participating telecom operators, accounting for two-thirds of the estimated 3 billion global
mobile phone users, with future penetration into this market likely. The WAC provides various libraries
and standard documents useful in the development of web applications at the same level as native

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received November 1, 2016; first revision January 18, 2017; accepted March 4, 2017.

Corresponding Author: Daewon Kim (drdwkim@dku.edu)

* Dept. of Applied Computer Engineering, Dankook University, Yongin, Korea (drdwkim@dku.edu)

J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017 ISSN 1976-913X (Print)

https://doi.org/10.3745/JIPS.04.0037 ISSN 2092-805X (Electronic)

Cloud Computing to Improve JavaScript Processing Efficiency of Mobile Applications

732 | J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017

applications by allowing the use of powerful HTML5 [1,2] user interface functions and mobile resources.
Those applications use JavaScript [3,4] to access the internal resources from mobile devices.

JavaScript is a language that is significant in configuring the web service client environment and is
processed by the interpreter method. Therefore, when simultaneously queried for multiple operations,
JavaScript stops while the web browser runs to perform processing. Another problem is the relatively
slower processing speed of JavaScript engines compared to native applications when performing
complicated processes or executing an algorithm with many operations. One alternative to lessen these
limitations is to use just-in-time (JIT) [5] compilers to improve JavaScript engine performance speed.
However, disadvantages of JIT include slow response due to limited mobile resources, increased
memory usage [6], and incapability for the mobile environment. Efforts to overcome these hindrances
are addressing the reuse of compiled codes [7]. Another alternative is a method that supports JavaScript
multi-thread programming. This method prevents execution speed- and screen-related stoppage by
performing multi-thread parallel processing. Document Object Model (DOM) Workers [8,9] provide
multi-thread functions, but they are unable to access DOM directly and do not share the name space.
To resolve these issues, HTML5 provides Web Worker functions [10]. The use of Web Workers enables
much of the run-time to be separated and processed in the background, which makes prompt
processing possible without freezing of the screen. In addition, it is possible to access the DOM and use
the namespace through the message during execution. A disadvantage of this approach is the need for
more run-time than native applications, despite powerful Web Worker functions, due to a restricted
mobile environment. This paper introduces a novel cloud framework to improve the operating
performance of web-based applications in the restricted mobile handset environment. In the proposed
method, JavaScript used in the existing client is instead performed in the server with relatively high
hardware specifications, whose results are taken as a response and processed. Performance assessment
revealed 3 to 6 times faster performance improvement compared to performance when locally executed.
Also, memory usage was reduced by transferring the execution code to the server. Section 2 of this
paper outlines the existing methods for improving JavaScript performances. Section 3 describes the
structure as well as technical performance procedures. Section 4 presents performance assessment
results in comparison with existing methods. Finally, Section 5 provides a discussion, conclusions and
future research directions.

2. Relevant Research

2.1 JIT Compiler

JavaScript is a scripting language designed on the condition that it is executed by an interpreter.
JavaScript is commonly used to implement dynamic elements of web pages showing responses
according to what the user types or time in the web browser, such as an auto complete function or real-
time search ranking display. Beginning recently, to provide a variety of services, many web pages are
being implemented using a JavaScript program requiring a large number of operations. However, a
problem arises concerning the user response time due to notable lag in speed when the code is
converted in the engine into an abstract syntax tree or intermediate code before being performed by the
interpreter. To improve this, some JavaScript engines use a JIT compiler during the execution to directly

Daewon Kim

J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017 | 733

perform machine code that translates JavaScript code or its intermediate code using a JIT compiler. Of
JavaScript engines, JIT compilers are used by V8 [11] and Mozilla's open-source browser, TraceMonkey
[12]. TraceMonkey executes a program in the interpreter by interpreting SpiderMonkey [13] JavaScript
code into intermediate code. As an alternative to this limited performance, TraceMonkey implemented
a JavaScript engine that improves performance by tracing a series of intermediate codes operated in the
interpreter to detect a repeated statement, and interpreting it into machine code by a JIT compiler
before execution. Fig. 1 presents the machine-code generation process in TraceMonkey using a JIT
compiler, with panels ‘A’–‘D’ denoting JavaScript functions or codes.

 (a) (b)
Fig. 1. Mechanical code generation process using the JIT compiler in TraceMonkey. (a) JavaScript code
and (b) complied code.

When there is a branch statement repeatedly evident in JavaScript code in A of Fig. 1, the JIT

compiler in TraceMonkey determines this as a frequently-executed path when performed in the
interpreter [14,15]. Hot-Path is used to expand the existing code (‘B’ in Fig. 1) beginning where the
repeated part begins, according to the path obtained when generating the initial code [16]. The code is
expanded depending on the flow of the program execution therefore duplicate code is generated (‘D’ in
Fig. 1). Processing speeds can be improved because the process of performing the crucial aspect of
execution time of a program not by an interpreting method but by machine code following the
compiling. This approach has an inherent disadvantage in that when the execution path changes by a
conditional statement in the repeat statement or overlapped repeat statement, compiling is completed
with the addition of a new path, which leads to the increase of run-time. The V8 JavaScript engine
translates firsthand and executes all functions called from JavaScript code into machine code using a JIT
compiler without going through an intermediate code [17]. This has the advantage of enabling all codes
to be promptly implemented with machine code as an analyzer is not needed for such implementations.
It also features the manufacture of machine codes dependent on library functions [18]. These JavaScript
engines currently being used in various commercial terminal environments have the disadvantage of
being unable to provide a processing speed that is as fast as the desktop browser due to limited
environment of the mobile ecosystem [19,20].

2.2 JavaScript Multi-thread

Since JavaScript and DOM in the existing commercial browser operate on a single thread, they
perform only one single job in a specific period of time. One disadvantage of such a processing
structure is that its speed is very slow compared to other programs that process concurrently. To resolve

Cloud Computing to Improve JavaScript Processing Efficiency of Mobile Applications

734 | J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017

this issue, methods that have been implemented include DOM Workers and HTML5 Web Worker [21].
DOM Workers were mounted on the open-source browser early in the browser’s development state
provided by the plug-in and used for experimental purposes. Workers themselves have no access to
DOM and are programmed to process simple operations separately. For example, with respect to
processing many repeat statements or recursive functions, they are programmed to be separated in js
files and processed. This method influenced even HTML5 for which standards were established and
consequently incorporated Web Worker as standards [22]. Web Worker currently being supported by
HTML5 can perform multi-processing and enable access to DOM using postMessage. This function has
the advantage of increasing processing speed by providing concurrency more than what is processed in
a single thread [23,24]. Fig. 2 depicts how HTML5 Web Workers run. When running an instance to use
Worker, the JavaScript code in Worker.js is executed in a separate thread. Then, to communicate with
the main thread executing HTML5, postMessage is used to deliver a message and the delivered message
is processed through the message. Moreover, as background operation is possible, many mobile
resources are likely to be utilized in accompanying smartphone applications [25,26].

Fig. 2. Method of operation for Web Worker in HTML5.

Web Workers make JavaScript processing effective in terms of function, but the results of the test

conducted in this research revealed that the browser on a desktop PC displays lower performance due
to limitations in mobile resources [27]. A cloud framework is proposed to improve the functions of
smart terminal application programs that demand complicated implementations in limited mobile
environment.

3. Cloud Framework to Improve the Processing of JavaScript with
Mobile Applications

3.1 Cloud Framework

The limited resource of the mobile environment presents performance limitations for a basic built-in

JavaScript engine in a browser. Hardware performance of cellular phone terminals is continuously
improving with a similar level of performance to a desktop PC, yet low-end terminals exist. To solve
this problem, the proposed framework that provides services close to an advanced level of hardware,
despite a low level of hardware resources, is introduced. This was designed for performance
improvements of GSMA-based applications that are performed with JavaScript with the use of the
principles of cloud computing [28]. The GSMA applications are divided into two groups. One is local

Daewon Kim

J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017 | 735

web application that is directly installed on mobile terminals and the other is remote web application
which provides application services using web servers from the internet. In case of remote web
applications, the server's abundant computing resources could be utilized, however, for the case of local
web applications, the client's limited computing power is the only method of operation. In a
multiprocessing environment, processing time measurements are affected by internal job processing
situations. This allows the user to make a choice whether to run locally or online with the proposed
cloud system so that they can decide whether to use it or not before main processing. Therefore, it is
recommended that we analyze the data based on the existing log data about the processing time and use
it when the processing time of the proposed cloud system is faster than local method. The log data also
records and manages the maximum utilization of the CPU and memory as a reference indicator,
including processing time, to determine whether the proposed system should run or not. Thus, we use
preliminary measurements of processing time, average CPU and memory utilization to determine the
use of the proposed cloud system. The system in this paper is basically for the JavaScript performance
improvements of local applications software in mobile terminals. For instance, the proposed cloud
framework method can be used for a local web application that can change automatically friends’
pictures registered in terminal's phonebook by face recognition when captured through a phone
camera. This picture-changing scenario is in the use case. The cloud framework system in this research
can be managed and charged by a program developer directly or open to the public at a low price or for
free. The GSMA related program developers in a small business can use this system to save expenses
and enjoy the fast and strong computing powers. Local web applications could be run by using the only
server's computing resources without recording or remaining data in the server. The cloud framework
provides a function of reducing the amount of operations of JavaScript in the mobile terminal by partly
transferring the JavaScript processing that demands a lot of run-time from the client and calling its
processing results to the client before use.

Use case of the proposed cloud framework system
Step 1: An user runs a GSMA based local web application program.

Step 2: The user chooses pictures of friends saved on the terminal and inputs each of their names.

Step 3: The user tries to change a friend's picture registered on a phonebook of the terminal.

Step 4: The application program recognizes the picture locally and estimates processing time and usage of CPU

and memory to edit.

Step 5: In order to decide whether to use the proposed system or not, the network delay and executing time

between the client and server and utilization of CPU and memory need to be expected in advance.

Step 6-A: If the expected running time and the usage of CPU and memory are greater than the local processing

amounts, then the case is dealt in local and moves to Step 8.

Step 6-B: If the expected running time and the usage of CPU and memory are less than the local processing

amounts, then the chosen pictures and name information is transferred to the system’s server.

Step 7: The server edits received pictures and sends back to the terminal. Remaining data in the server need to be

deleted.

Step 8: The application program changes each pictures of friends in the phonebook correspondingly and finishes

the processing.

Fig. 3 is a concept drawing of the proposed system, in which the mobile client delivers the JavaScript
requiring much time during the execution to one of the cloud-based, process-enabled servers to process
the server. In Fig. 3, the proposed cloud system has a merit that users are able to utilize high-fidelity
server from a remote location using the JavaScript language in clients unlike other cloud systems. In

Cloud Computing to Improve JavaScript Processing Efficiency of Mobile Applications

736 | J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017

case of some other cloud services, it is only possible for users to use pre-specified programs, and there
are shortcomings of sharing resources between servers of many companies. The proposed system in Fig.
3 is a complementary framework for those drawbacks.

Fig. 3. Concept of the proposed cloud system and operating structure.

The cloud computing system used in this research is the type of IaaS (infrastructure as a service)

which lends hardware resources so that the web applications could utilize the server's abundant
computing powers. If there is a JavaScript code that requires high quality computing resources in a local
web application, then the application developer could improve the local web application’s performances
using the cloud framework server system described in this study. There are two ways to process
JavaScript. The first method is a single processing system. In Fig. 3, the client configures a JavaScript
function to execute or the file containing its contents in format of water vapor (WV) and transmits it to
the server. The WV protocol, a message with a JavaScript Object Notation (JSON) structure, allows the
web server C in Fig. 3 to receive and process it [29], whose results are converted again into a WV form
and transferred to the corresponding client. Second is a server relay method; when the WV message
transmitted by the client has several server addresses recorded, the record is viewed and processed while
travelling between the servers. In the process, a client requests web server A to process JavaScript, and
delivers its results to web server B, and re-transmits the final results to the client. Fig. 4 systematically
depicts the framework structure. The system in Fig. 4 makes use of a method of performance using
JavaScript in the browser, so it can be included in the GSMA framework as well as in the application
being performed to be processed. The system basically operates by communication between browser
where applications run and server. Although services are provided focusing on native application
software in existing cloud system, the proposed system mainly supports web-based applications,
specifically for mobile web-applications that are much restricted within low performance and hardware
capacity. For communication in JavaScript, Ajax is used for an identical domain, whereas WebSocket
for a different domain. Now that GSMA creates applications with HTML5 as standards, the proposed
system carries out communication with the use of HTML5 WebSocket being also accessible to other

Daewon Kim

J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017 | 737

domains, instead of Ajax. The HTTP Communication portion in Fig. 4 is a module used for
communication with the server. To process the client-server request, a WV message format is used. As
the process code comprised of JavaScript is inserted into what the client makes request to the server, the
requested server transmits the message in a WV format to process this. Therefore, the WV message
controller to create or delete such a WV message exists.

Fig. 4. The proposed cloud framework structure (named Cyclostorm).

Event trigger plays a part in calling the previously defined function in the code to correspond to the

event taking place at the time of delivering and receiving a WV message. In addition, the system’s API
access control represents an interface and the gathering of interfaces provided by API composed of
JavaScript. Ultimately, the system is provided in the form of a library so that JavaScript can be executed
in the GSMA applications where JavaScript operates.

3.2 WV Message

WV message is a kind of executable message that has the function codes to be executed in the server

and the values of factors that enter each parameter. The WV message is transmitted using the HTTP
technology and it includes data for executions and JavaScript codes that run on a cloud server. The
server in receipt of the WV message from the client processes the JavaScript included in it and transmits
its results to the client, when the result values are included in the WV message and transmitted.

Fig. 5. Structure of a WV message.

Cloud Computing to Improve JavaScript Processing Efficiency of Mobile Applications

738 | J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017

Fig. 5 shows a structure of the WV message. From Fig. 5, the WV header includes request and
response information and execution codes. The WV data contain information in the type of key-values
for running JavaScripts. Table 1 summarizes the system of requested WV message’s header format. In
Table 1, Version indicates the version of a WV message and becomes an identification value for
identification purposes when making multiple requests to the single server or several random servers.

Script indicates the type of the code executed in the server, and hosts denote an address to which the
server will be connected. Since there are some cases where requests are made for processing through
several servers, an array is used when displaying the address of a pass-through server.

Table 1. Water vapor message request header format

Name Contents Example (JSON data type)

Version Water vapor message version {"version":"1.0"}

Identification Recognition value for 1:N request {"id":"2100"}

Script Script type to run in server
{"script":{"language":"JavaScript",

"type":"text/JavaScript"}}

Hosts Server address for 1:N connection {"hosts":{"a.com", "b.com"}}

Flag Request type value {"flag", "start"}

Content Function code with JavaScript {"content":{"args":[100, ,"hello"],
"func":"functon a(arg1, arg2) { }"};

Table 2. Water vapor message request flags
Name Content

Start Code-run start request to server

Resume Resume request to paused server

Suspend Pause request of code-run

Stop Stop request of code-run to server

Post Asynchronous message processing request to executing server

Flag is a value used to make a request to the server, and its kinds are listed in Table 2. The Flags in
Table 2 is similar to the name of a function that operates threads on the local. Start denotes the
implementation of the code delivered to the server, whereas resume and suspend denote pausing or
restarting the code being currently executed in the server. Stop means to request for the server in
process to close. Post is used when making asynchronous requests to bring current in-progress
situations or internal values to the server, or when a new value is allocated. Finally, in the Content seen
in Table 1, actual function codes to be performed in the server and the values of elements to be used in
parameters are stored in JSON format. Table 3 describes a function performing factorial operation
within the Content as an example of JavaScript codes.

Daewon Kim

J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017 | 739

Table 3. Example of a content

Factorial computation function

{ "args" : ["10"], // first parameter factor value

"func" : " // factorial computation function code

function factorial(n) {

if (n > 1) { return n*factorial(n-1); }

else { return 1; } }" }

The "args" in Table 3 represents a parameter value when performing a function defined in "func". This
is composed of arrays and set as the values of parameters and elements when performing functions in
orders of 0, 1, and 2. If any contents in the WV data are used as parameter values, then the key-value of
the WV message is applied. The "func" term indicates a function code to be executed. The value in the
0th "args" array, when the server runs "func", is allocated to the value n out of ‘function factorial(n)’ in
and implemented. When the requested function code is performed and closed, the server notifies the
client of its results. Table 4 shows the response format of the WV message used during this time.

Version in Table 4 indicates the version of a WV message, and Identification represents the
identifying value for the requested message. Script means a kind of script that can execute the value
saved in Content, while Hosts is the address array of the server sending a request for response, where
the array number 0 in the front part represents the address of the server issuing a response, and other
addresses mean the addresses of the server with remaining requests.

Table 4. Water vapor message response format
Name Contents Example (JSON data type)

Version Water vapor message version {"version":"1.0"}

Identification Response message version from a client {"id":"2100"}

Script Script type to run in a client {"script":{"language":"JavaScript",
"type":"text/JavaScript"}}

Hosts Server address sent the current response message {"hosts":{"a.com", "b.com"}}

Flag Response type value {"flag", "stop"}
Content Final results after execution {"content":{"data":"1234"}};

Table 5. Water vapor message response flags

Name Content

Success Message of successful execution status for transferred request

Error Message of server execution error

Redirect Message of request transfer to the next server

Post Transmission of execution-possible code in a client

Lastly, Flag indicates the value for a response type as shown in Table 5. Success in Table 5 means a
request success as well as messages that record the processed results in Content and send them out.
Error, in the occurrence of error found during the execution, inserts a substitute code in the client and

Cloud Computing to Improve JavaScript Processing Efficiency of Mobile Applications

740 | J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017

makes requests to the server. It also helps to get the server to change the code and perform an operation.
Redirect is a message that notifies the client of the fact that a request is transferred from the in-process
server to another server. Then, the client is reconnected to the modified server address and becomes
communicable after receiving redirect messages. Post is used when the server makes a request to the
client for code execution or when renewing the client's user interface (UI) or current situations.

3.3 Cloud Computing Service

The system in this research is capable of implementing requests simultaneously in several servers
using WebSocket. HTML5 WebSocket performs a 3-handshake to connect to the server. Connection is
then confirmed only for a client with a right to perform, and therefore, a request for an anonymous
client can be withdrawn in advance. Fig. 6 depicts the signal flow of the cloud computing system. For an
initial operation, 3-handshake is implemented so it can connect to the server using WebSocket. The
service can be easily used as it provides possible real-time two-way communication. The next step
involves the client using a WV message to request a code to execute to the server. The server that
receives the response checks if the client is authorized and processes it immediately. Then, it transmits
the success response message to the client. The Event Trigger upon the receipt of the success message
calls a response handling function assigned by the client. After checking the success message, the client
carries out other work until the next Event Trigger occurs.

Fig. 6. The proposed system’s signal flow graph.

After that, the server sends the final result by the response message, transmits the stop message to the

client as a signal that the execution has ended, and immediately shuts down the connection to receive a
request from the client. The client with the final notified results performs a task based on the results.
While this helps obtain promptly the processed results of the complicated operations, in which the
client should perform or the process requiring a lot of time, a client occasionally makes additional

Daewon Kim

J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017 | 741

requests for the work situation of the server or specific details. For example, when needing to know
about how much the calculation has been finished so far or what is the intermediate result in operating
100! (factorial), one can request to the server. At this time, the question and answer can be done with
the server using the request of the WV message for post.

Fig. 7. Signal flow graph for processing a specific request from an operating server.

Fig. 7 displays this signal flowchart. The client in Fig. 7 can request the values for specific variables or
user-defined data to the server being currently executed with the use of the post in the WV message.
The Event Trigger of the server that received the request handles the requested signal processing and
stores the values in the content in the success response message prior to transmitting. Then, the
question and answer process is completed by calling the user-defined function by the Event Trigger of
the client. In case the execution error occurs due to the wrong passage of the user code or the
malfunction of the server system when executing in the server, the server immediately closes the
handling process, transmits the error message and cuts off the connection. Fig. 8 shows the signal
processing flowchart in the occurrence of such an error.

According to Fig. 8, upon the occurrence of an error in the server, it sends the WV error message to
the client, exit the process being executed and immediately cut off the connection. However, when there
is an error in the performance code transmitted from the client and exceptional handling such as the
try-catch statement, it is not terminated but waits for a replacement code. Fig. 9 depicts a flowchart of
signals requesting replacement codes in the error occurrence. The figure shows a process in which the
client detects the error created during execution in the server, inserts the replacement code, and
transmits WV POST messages to the server. The waiting server inserts the replaced request code from
the client before continuing with the next process. When an error takes place again due to the replaced
code, instantly close the process, send the error message and cut off the connection.

Cloud Computing to Improve JavaScript Processing Efficiency of Mobile Applications

742 | J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017

Fig. 8. Signal flow graph of an error case for an operating server.

Fig. 9. Signal flow graph for an exceptional request processing of an error case for the operating server.

Unless the error comes up, the success message is delivered to the client. When the client makes
requests to a number of servers for processing, the client can get the returned results during the process
and the server request is instantly delivered to another server. Fig. 10 shows the signal flowchart of the
system that implements the 1:N request. In Fig. 10, the request is made to server A and subsequent
results are delivered to the client. Then, server A closes a connection and the client attempts to connect
the WebSocket to the address of the following server in Hosts. Upon completion of the connection to
server B, a request message is sent along with the code to implement next and result data received from

Daewon Kim

J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017 | 743

server A. Server B, which receives the request, ultimately delivers the results handled afterward to the
client. The proposed cloud framework system is composed of a client-server model, and therefore,
unlike JIT and Web Worker which run in local environments, the system performance somewhat
depends on the amount of transferring data and network conditions between the client and the server.
The system has a function that is able to expect the execution time dynamically with respect to current
network conditions. Fig. 11 shows the process of pre-evaluation of running time.

Fig. 10. Signal flow graph for a request and 1:N server connection.

Fig. 11. Signal flow graph of pre-evaluation of the execution time.

Cloud Computing to Improve JavaScript Processing Efficiency of Mobile Applications

744 | J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017

In order to decide whether to send a work to the cloud or not, the system measures the execution
time by processing a function or a code of JavaScripts from the GSMA applications using the JIT. At
this point, the JIT method is used as a standard since there is only ‘±2%’ average functional difference
between the JIT and Web Worker. Next, the data transmitting and receiving delay due to WAN delay
and jitter is measured through a ping test between the client and the server. One advantage of the
system studied in this research is that it can promptly process in the server the JavaScript code requiring
too much time to be handled promptly under limited mobile client environments. JavaScript, in
general, is a scripting language used in the client side for a simple task. The applications developed
according to the GSMA standards, however, should be able to execute a variety of functions of native
applications promptly and accurately. JavaScript working in the browser is largely dependent on
hardware performance of a terminal in terms of its processing speed. As the mobile terminal with high-
speed processing capability like smartphones increasingly improves its processing power close to the
level of general desktop PC, this problem is expected to be resolved. But, at the present time when low-
end specification terminals exist at all times and a software structure is becoming more and more
complicated, the proposed system, Cyclostorm, is capable of providing all terminals with processing
power with little difference from each other. A mobile terminal connected to the internet utilizes
powerful hardware resources in the server side, which, therefore, can improve processing speed and
reduce the processing burden of the client. The cloud computing services are expected to be usefully
applied in that the present modern times allow most of mobile terminals to use wireless network such as
3G, 4G and Wi-Fi.

4. Simulation and Performance Assessment

4.1 Simulation System

HTML5-based simulation environment was built to assess the performances of the proposed system.
The free and open-source web browser can be used for performance assessment in the client, for it
supports Web Worker among HTML5. In addition, a simulation web application is built for the system
performance assessment, using Face Detection, 2D Fractal rendering and 3D Raytracer rendering,
which require a relatively large number of operations. Fig. 12 shows the specifications and basic
information about the web applications used for the system’s performance assessment. Such
applications as Face Detection, 2D Fractal rendering, and 3D Raytracer rendering shown in Fig. 12 are
all composed of JavaScript and use HTML5 canvas to process images. The applications require so many
operations that they take up approximately over 2 seconds even in the hardware-mounted high-end
specification desktop browser.

The researched system uses a method that processes the results in the server to be utilized in the
client. The server used for the system’s simulation was designed to make web service possible.
Hypertext preprocessor (PHP) modules for Apache 2.0 and WebSocket services are installed in the
programs used for web services. The JavaScript engine installed in the server is a V8 and has modules
needed to support the system’s services implemented. For the clients for simulation use, the terminals
commercialized at present were used because the processing speed of the JavaScript engine in the
browser varies according to hardware performances in the mobile terminal. For the system’s
performance assessment, four different types of smartphone models, shown in Table 6, were selected.

Daewon Kim

J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017 | 745

 (a) (b) (c)

Fig. 12. Web applications used for performance evaluation of the proposed cloud computing system. (a)
Face Detection, (b) 2D Fractal rendering, and (c) 3D Raytracer rendering.

The mobile terminal presented in Table 6 performed the web applications shown in Fig. 12 and

assessed their performances. To measure run-time, the modules for this were implemented in the web
applications. JIT compiler, Web Worker and the system researched in this paper were used to run
simulation 100 times each, and the average run-time was measured and its results were analyzed. The
experiments have been done in Wi-Fi (local area networks [LAN]) and mobile 3G (metropolitan area
networks [MAN]) environments. Under the Wi-Fi and 3G environments, the ping test results of 64
bytes data transmitting-receiving time were less than 2 ms and 25 ms, respectively.

Table 6. Mobile terminals and specifications used for performance evaluation of the system

Device CPU RAM
D1 1.2 GHz dual core 1 GB (DDR2)
D2 1.5 GHz dual core 1 GB (DDR2)
D3 1.0 GHz dual core 512 MB
D4 1.0 GHz dual core 1 GB (DDR2)

4.2 Performance Assessment and Result Analysis

First of all, to decide whether to send a work to the cloud or not, the system measures a running time
by processing a function or a code of JavaScripts from the GSMA applications using the JIT. Eq. (1)
shows the way of computation of expected processing time, Testimate. From the previous evaluation of the
classification of works, if the estimated running time, Testimate, of the proposed system is shorter than
other two methods (JIT and Web Worker), then the Cyclostorm is used; otherwise, the JIT or Web
Worker method is used. With the help of these processes, the GSMA applications are able to be
performed more effectively.

Cloud Computing to Improve JavaScript Processing Efficiency of Mobile Applications

746 | J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017

Testimate=[TJIT×(1-0.82)+DTR] (1)

The JIT processing time, TJIT, in (1) is the duration of local resources' operation time of a terminal and

DTR is the network transmitting and receiving delay time obtained from the ping test. From the
evaluation of processing time, Testimate, the cloud framework system is 76.44% through 85.63% superior
to other methods such as the JIT or Web Worker. It also showed 82.19% averaged efficiency
improvements of reducing the processing time. Table 7 shows the average processing times from the
experimental results.

Table 7. Comparison of the average processing time (10-3 second)

Device JIT WW CY Improved (%) Ref. value

D1 4982.40 4750.70 1146.30 76.44 2433.2750

D2 7787.50 6684.40 1145.20 84.17 3617.9750

D3 7111.90 8867.20 1147.50 85.63 3994.7750

D4 6474.80 6613.40 1144.90 82.50 3272.0500

Avg. 6589.15 6728.92 1145.97 82.19 3329.5175

As it can be seen from the Table 7, the executing time of the proposed system can be estimated by
multiplying 0.18 to the JIT processing time since there is 82.19% averaged improvements in processing
speed. In addition, the network transmitting and receiving delay time, DTR, is added from the ping test
and then the total estimated running time, Testimate, is obtained as shown in Eq. (1). Here we have
reference values to decide whether to use the Cyclostorm. The reference value is set to 50% of the
average expected operation time when using JIT or Web Worker method. Therefore, it only works
when the expected operation time of the Cyclostorm can guarantee at least 50% improvement over the
existing JIT or Web Worker method. This reference value is also shown in Fig. 7 as a basis for judging
the operation of the Cyclostorm. It is recommended that the Cyclostorm is used if the average
processing time of the system based on the log data is faster than that of local method. In addition, the
average value of CPU and memory usage is measured and stored in the log data, and the current usage
of each mobile device is compared to determine which method is better. On average, the Cyclostorm
are CPU-intensive and use less memory, so using an average of 82% faster Cyclostorm is more efficient
if they are heavily weighted on mobile device’s processing time. Fig. 13 shows the measurement results
of run-time of Face Detection (FD), 2D Fractal (2D) and 3D Raytracer (3D) applications implemented
in JavaScript on Wi-Fi using the given four different client terminals (D1 through D4).

JIT compiler method generally measures execution time differently depending on hardware
specification of a terminal. D1 from Table 6, which is relatively higher-end device than other terminals,
showed the shortest run-time according to measurement in Fig. 13. Web Worker supported by HTML5
was generally handled faster than the JIT compiler, but measurement times were not constant due to
the multitasking environment. JIT compiler and Web Worker methods revealed comparatively little
difference in performances. The method in this paper (indicated as CY in the figures) utilizes high-
performance hardware present in the server side without being affected by the multitasking
environment, which, therefore, brought a prompt processing in all terminals. According to Fig. 13, the
run-time for rendering 2D Fractal is not as long as the Face Detection application program, but
performance assessment results from measurement showed that D1 with the outstanding hardware

Daewon Kim

J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017 | 747

performance was the fastest in run-time. As the 3D case had a larger amount of operation processed
than Face Detection and 2D Fractal, the processing time was longer in all terminals according to the
measurement. When compared to the JIT compiler and the Web Worker method processed in the local
browser of the terminal, the proposed method was processed rapidly because it shows the results
executed only in the server. Additionally, in 3D Raytracer rendering, it has less decimal point
operations and data amount processed in the multi-thread than 2D Fractal. Thus, the Web Worker
method drew results faster than the JIT compiler. Regarding the CPU share in Fig. 14, the JIT compiler
and the Web Worker method were lower according to the measurement, when compared to the
proposed method (CY).

Fig. 13. Execution time at each smart devices for three different web applications (FD=Face Detection,
2D=2D Fractal, 3D=3D Raytracer). (a) D1, (b) D2, (c) D3, and (d) D4.

Fig. 14. CPU occupancy rate at each smart devices for three different web applications (FD=Face Detection,
2D=2D Fractal, 3D=3D Raytracer). (a) D1, (b) D2, (c) D3, and (d) D4.

Cloud Computing to Improve JavaScript Processing Efficiency of Mobile Applications

748 | J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017

This is because mobile network resources are used and the proposed framework is loaded while the
system is connecting to the server to handle the web program and receiving the corresponding results.
However, this CPU usage was 4% to 7%, which was comparable with the existing methods. In addition,
since it maintains a very low usage when compared to the overall CPU usage, it does not affect other
functions of a terminal, either. Rendering a 2D Fractal applies operations below decimal point in many
cases, which can impose many hardware-related burdens in mobile terminals.

Fig. 15. Memory usage at each smart devices for three different web applications (FD=Face Detection,
2D=2D Fractal, 3D=3D Raytracer). (a) D1, (b) D2, (c) D3, and (d) D4.

This is why the JIT compiler running on the main terminal was handled faster than Web Worker,

which creates multi-thread through a temporary pause of the operations employed in UI outputs as well
as the allocation of many CPU resources only to the decimal point operation. Measurement results
shown in Fig. 15 had the least amount of memory used by the CY. The devices’ mobile platform uses
Java, so the Garbage Collector is responsible for memory management, whereas the CY utilizes
memories in the server side when executed. Thus, it seems that memory usage was generally lower than
the other methods according to measurement. The memory used at time of execution was also used in
the server side. Hence, the CY generally showed more excellent results than the other methods. Fig. 15
includes much of the basic amount of memory for 3D rendering needs presented a comparatively
higher figure than other performance assessment measurements. Fig. 16 displays measurement and
comparison results of processing times in the system, 3G and Wi-Fi environment using three different
client terminals, with the exception of D4 (tablet) in Table 6 showing no support for 3G
communication.

The 3G network environment is relatively slower in speed than Wi-Fi in terms of transmission,
taking up longer processing time than Wi-Fi. However, measurement results showed a slight difference
of approximately 10 to 400 ms between the two methods. It is assumed that the reasonable 3G network
provides services at a speed level similar to Wi-Fi connected to a wired network. According to
performance assessments of Face Detection, 2D Fractal, and 3D Raytracer rendering, the processing

Daewon Kim

J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017 | 749

speed of the system was at 3 to 6 times faster on the Wi-Fi network than the JIT compiler and the Web
Worker method. Additionally, the use of proposed method enables a similar processing time to be
measured, regardless of hardware in mobile environments, and complicated JavaScript-embodied
operation or rendering enables more effective processing than the existing method and is capable of
providing services with performance in the identical level. The system in this paper yielded comparative
advantages over other the methods as it utilizes the memory used at time of execution in terms of
memory usage.

 (a) (b) (c)

Fig. 16. Execution time at each smart devices for three different web applications in Wi-Fi and 3G
environments. (a) Face Detection, (b) 2D Fractal, and (c) 3D Raytracer.

5. Conclusions

With a rise in the global distribution of GSMA based mobile web application software, the processing
capability of the application embodied with JavaScript and HTML5 is an increasingly relevant and
important issue. If it is a structure with simple processing functions, there is no problem in the
currently commercialized browser. However, the continuous growth of the processing capacity of
JavaScript for communication with the user also increases the browser burden. A commercialized
mobile browser is limited in time and capacity in JavaScript processing. There are limitations in
browser processing and, especially, 3D application that demands many operations to be handled, which
does not guarantee that the processing speed will be as fast as the native application. As an alternative,
HTML5 provides the Web Worker for multi-thread implementations not supported by the existing
JavaScript. Web Worker provides a mechanism that processes a certain part of what a single thread
processes through a separate thread. But, it may not guarantee the processing power of the native
application and is insufficient in improving the fundamental speed of processing. Moreover, when the
mobile hardware has low specifications, Web Worker alone is not enough to reduce the burden of
hardware. The system in this paper is a service that overcomes the restrictions of limited sources of a
client by transferring the JavaScript processing on the mobile to a cloud-based server. This service also
provides a high-performance handling process to guarantee as much performance as the native
application holds. In a performance assessment test, the proposed system was approximately 6 times
faster in performance than JavaScript processing on the existing mobile browser, displaying about 4 to 6
times faster performance than Web Worker. CPU usage was in the range of 4% to 7%, which was lower
than the overall usage, with little effect on the terminal performance. In addition, a low amount of usage

Cloud Computing to Improve JavaScript Processing Efficiency of Mobile Applications

750 | J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017

was generally found because it utilizes the memory used at time of execution kept in the server side.
Performance comparison and assessment results indicated that the proposed system is capable of
overcoming the limitations the browser has and considerably improving existing web application
functions. It also showed to be offering services with no major difference even though 3G is relatively
slower in speed than Wi-Fi. Continual future research studies are planned on effective cloud computing
that can be applied to the proposed system also in 4G and future mobile environments.

Acknowledgement

The present research was conducted by the Research fund of the Small and Medium Business
Administration of Republic of Korea in 2017. (No. S2444403)

References

[1] J. Meyer, HTML5 and JavaScript Projects. New York, NY: Apress, 2011.
[2] A. Taivalsaari and K. Systa, “Cloudberry: an HTML5 cloud phone platform for mobile devices,” IEEE

Software, vol. 29, no. 4, pp. 40-45, 2012.
[3] A. MacCaw, JavaScript Web Applications. Sebastopol: O’Reilly Media, 2011.
[4] J. K. Martinsen, H. Grahn, and A. Isberg, “Using speculation to enhance JavaScript performance in web

applications,” IEEE Internet Computing, vol. 17, no. 2, pp. 10-19, 2013.
[5] B. S. Yang, J. Lee, S. Lee, S. Park, Y. C. Chung, S. Kim, K. Ebcioglu, E. Altman, and S. M. Moon, “Efficient

register mapping and allocation in LaTTe, an open-source Java just-in-time compiler,” IEEE Transactions
on Parallel and Distributed Systems, vol. 18, no. 1, pp. 57-69, 2007.

[6] C. Rohlf and Y. Ivnitskiy, “The security challenges of client-side just-in-time engines,” IEEE Security &
Privacy, vol. 10, no. 2, pp. 84-86, 2012.

[7] V. Pimentel and B. G. Nickerson, “Communicating and displaying real-time data with WebSocket,” IEEE
Internet Computing, vol. 16, no. 4, pp. 45-53, 2012.

[8] I. Green, Web Workers: Multithreaded Programs in JavaScript. Sebastopol: O’Reilly Media, 2012.
[9] Y. Watanabe, S. Okamoto, M. Kohana, M. Kamada, and T. Yonekura, “A parallelization of interactive

animation software with web workers,” in Proceedings of the 16th IEEE International Conference on
Network-Based Information Systems, Gwangju, Korea, 2013, pp. 448-452.

[10] P. Lubbers, B. Albers, and F. Salim, Pro HTML5 Programming, 2nd ed. New York, NY: Apress, 2011.
[11] L. Ullman, Modern JavaScript: Develop and Design. San Francisco, CA: Peachpit Press, 2012.
[12] D. Tiwari and D. Solihin, “Architectural characterization and similarity analysis of sunspider and Google's

V8 JavaScript benchmarks,” in Proceedings of the IEEE International Symposium on Performance Analysis
of Systems and Software, New Brunswick, NJ, 2012, pp. 221-232.

[13] Wikipedia, “JavaScript,” 2011 [Online]. Available: https://en.wikipedia.org/wiki/JavaScript.
[14] R. Radhakrishnan, N. Vijaykrishnan, and L. K. John, “Java runtime systems: characterization and

architectural implications,” IEEE Transactions on Computers, vol. 50, no. 2, pp. 131-146, 2001.
[15] C. Vivaracho-Pascual and J. Pascual-Gaspar, “On the use of mobile phones and biometrics for accessing

restricted web services,” IEEE Transactions on Reviews, vol. 42, no. 2, pp. 213-222, 2012.
[16] C. Severance, “Discovering JavaScript object notation,” Computer, vol. 45, no. 4, pp. 6-8, 2012.

Daewon Kim

J Inf Process Syst, Vol.13, No.4, pp.731~751, August 2017 | 751

[17] S. S. Sriparasa, JavaScript and JSON Essentials. Birmingham, UK: Packt Publishing, 2013.
[18] A. Gal, C. W. Probst, and M. Franz, “HotpathVM: an effective JIT compiler for resource-constrained

devices,” in Proceedings of the 2nd VEE International Conference on Virtual Execution Environments,
Ottawa, Canada, 2006, pp. 144-153.

[19] B. Gao, L. He, and S. A. Jarvis, “Offload decision models and the price of anarchy in mobile cloud
application ecosystems,” IEEE Access, vol. 3, pp. 3125-3137, 2016.

[20] A. Gheith, R. Rajamony, P. Bohrer, K. Agarwal, M. Kistler, B. L. White Eagle, C. A. Hambridge, J. B.
Carter, and T. Kaplinger, “IBM Bluemix mobile cloud services,” IBM Journal of Research and
Development, vol. 60, no. 2-3, pp. 1-12, 2016.

[21] F. Y. Jiang and H. C. Duan, “Application research of WebSocket technology on web tree component,” in
Proceedings of the IEEE Symposium on Information Technology in Medicine and Education, Hakodate,
Japan, 2012, pp. 889-892.

[22] N. Serrano, J. Hernantes, and G. Gallardo, “Mobile web apps,” IEEE Software, vol. 30, no. 5, pp. 22-27,
2013.

[23] S. Kurumatani, M. Toyama, and E. Y. Chen, “Executing client-side web workers in the cloud,” in
Proceedings of the 9th IEEE Asia-Pacific Symposium on Information and Telecommunication Technologies,
Santiago & Valparaiso, Chile, 2012, pp. 1-6.

[24] X. Ma, Y. Zhao, L. Zhang, H. Wang, and L. Peng, “When mobile terminals meet the cloud: computation
offloading as the bridge,” IEEE Network, vol. 27, no. 5, pp. 28-33, 2013.

[25] Y. Wu, Z. Zhang, C. Wu, Z. Li, and F. C. M. Lau, “CloudMoV: cloud-based mobile social TV,” IEEE
Transactions on Multimedia, vol. 15, no. 4, pp. 821-832, 2013.

[26] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mobile cloud computing: taxonomy and
open challenges,” IEEE Communications Surveys &Tutorials, vol. 16, no. 1, pp. 369-392, 2014.

[27] L. A. Tawalbeh, R. Mehmood, E. Benkhlifa, and H. Song, “Mobile cloud computing model and big data
analysis for healthcare applications,” IEEE Access, vol. 4, pp. 6171-6180, 2016.

[28] I. Bojanova, J. Zhang, and J. Voas, “Cloud computing,” IT Professional, vol. 15, no. 2, pp. 12-14, 2013.
[29] B. Frankston, “HTML5,” IEEE Consumer Electronics Magazine, vol. 3, no. 2, pp. 62-67, 2014.

Daewon Kim http://orcid.org/0000-0001-6964-9535

He received a M.S. (1996) from the University of Southern California, Los Angeles,
CA, USA, and a Ph.D. (2002) in Electrical and Computer Engineering from Iowa
State University, Ames, IA, USA. He worked as a senior researcher at Samsung
Electronics Co. Ltd., Suwon, Korea (2002–2004). He is currently a professor in
Department of Applied Computer Engineering at Dankook University, Korea. His
research interests include signal processing, mobile applications, and nondestructive
evaluation.

