

www.kips.or.kr Copyright© KIPS

A Survey on the Detection of SQL Injection Attacks and
Their Countermeasures

Bharti Nagpal*, Naresh Chauhan**, and Nanhay Singh***

Abstract
The Structured Query Language (SQL) Injection continues to be one of greatest security risks in the world
according to the Open Web Application Security Project’s (OWASP) [1] Top 10 Security vulnerabilities 2013.
The ease of exploitability and severe impact puts this attack at the top. As the countermeasures become more
sophisticated, SOL Injection Attacks also continue to evolve, thus thwarting the attempt to eliminate this
attack completely. The vulnerable data is a source of worry for government and financial institutions. In this
paper, a detailed survey of different types of SQL Injection and proposed methods and theories are presented,
along with various tools and their efficiency in intercepting and preventing SQL attacks.

Keywords
Dynamic Analysis, Detection, Prevention, SQL Injection Attack, Static Analysis, Vulnerabilities

1. Introduction

In today’s age, the ease of accessibility through web applications has completely revolutionized the
traditional view of an office or a company. The data is stored in databases, which can be accessed
anywhere and anytime through a network. These databases are built on the basis of Codd’s principle,
which uses SQL (pronounced as ‘sequel’) to interact with the external environment. The standard
format that is followed for all databases has improved consistency, but at the cost of ease of
exploitability. The staggering amount of data present on the Internet has led to security threats.
Malicious access to this vulnerable data could cause incalculable financial loss along with irreparable
damage to one’s reputation.

2. Overview of SQL Injection

Structured Query Language (SQL) is a high level language used in database management systems
(DBMS). SQL was originally developed in the early 1970’s by Edgar F. Codd at IBM. It allows the user to

modify, delete, or to just access data. The ‘query’ is a unit of execution in SQL that returns a set of rows

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received October 22, 2013; accepted December 04, 2013; onlinefirst April 20, 2015.

Corresponding Author: Bharti Nagpal (bharti_553@yahoo.com)

* Dept. of Computer Engineering, AIACT&R, Delhi, India (bharti_553@yahoo.com)
** Dept. of Computer Engineering, YMCA University of Science & Technology, Faridabad, Haryana, India (nareshchauhan19@yahoo.com)
*** Dept. of Computer Engineering, AIACT&R, Delhi, India (nsingh1973@gmail.com)

J Inf Process Syst, Vol.13, No.4, pp.689~702, August 2017 ISSN 1976-913X (Print)

https://doi.org/10.3745/JIPS.03.0024 ISSN 2092-805X (Electronic)

A Survey on the Detection of SQL Injection Attacks and Their Countermeasures

690 | J Inf Process Syst, Vol.13, No.4, pp.689~702, August 2017

and columns depending on the condition specified in the query. In database driven web applications,
SQL statements incorporate user-supplied data or text. If an insertion of user-supplied data is done in
an unsafe manner, then the web application becomes vulnerable to an SQL Injection Attack.

SQL injection vulnerabilities and attacks occur between the presentation tier and the CGI tier. Most
vulnerabilities are accidentally made in the development stage. The data flow of each tier using
malicious input data are as shown in Fig. 1. It depicts the user’s authentication step. When an
authenticated user enters its ID and password, the presentation tier uses the GET and POST method to
send the data to the CGI tier. The SQL query within the CGI tier connects to the database and processes
the data.

Fig. 1. The data flow of each tier using malicious input data.

3. Types of Vulnerabilities

In this section, the types of vulnerabilities in programming are described in Table 1.

Table 1. Brief description of different types of vulnerabilities
Type of vulnerability Description

Type 1 Unclear distinction between data types accepted as input

Type 2 Delay of operation analysis till the runtime phase, thus consideration of current
variables instead of source code operation

Type 3 Improper type specification while designing

Type 4 Input validation is not well defined and incorrect analysis of sanitized inputs

4. Types of SQL Injection Attacks

In this section, different types of SQL Injection Attacks are described in Table 2.

Attacker
Presentation

Tier
(Login form)

Login
application

will generate
SQL query

based on user
text

SQL
query

 Database Server

Username= abc or ‘1’=’1’
Password= 1234 or ‘2’=’2’

Select * from reg_user where
user=’abc or ‘1’=’1’’ and

pass=’1234 or ‘2’=’2’’

Query is executed.
Database

compromised

Bharti Nagpal, Naresh Chauhan, and Nanhay Singh

J Inf Process Syst, Vol.13, No.4, pp.689~702, August 2017 | 691

Table 2. Brief description of different types of SQL Injection Attacks

Type of attack Attacker’s aim Description Example

Tautologies

Bypassing
authentication and
extracting data

Conditional statements
are formed in such a way
that they are always true.

Select * from emp_info where
empid=” or ‘7=7’;

Logically Incorrect
queries

To extract information
about database and
identify injectable
patterns

Invalid queries are
executed leading to error
messages which
constitutes information
about data type or table
name.

Aggregate functions applied on
varchar or invalid data types
Or using ‘having’ and ‘group
by’ clauses.

Union Query

Bypassing
authentication and
extracting data

By using operator
‘union’, malicious query
is joined with safe query.

Select * from user where
user=’ravi’ union select * from
admin where id=’3142’--
‘pass=’2=2’;

Stored procedure

Privilege escalation,
executing remote
commands, DoS

Using built-in procedures,
malicious actions are
performed.

Commands like DROPTABLE,
SHUTDOWN are executed.

Piggy-backed queries

Data extraction and
modification, DoS

Malicious query is
appended to legitimate
query. On execution of
first query, second also
gets executed.

Select * from user where name=
‘ravi’ and pass=’1234’;drop
table user;

Alternate Encodings

To evade detection

Some database have
filters which detect
characters like --, %, etc.,
as bad character. So to
avoid detection, attacker
encode the query in
ASCII or Unicode.

SELECT salary FROM users
WHERE login=” AND pin=0;
exec (char
(0x73687574646j776e));

Inference

Data extraction, database
schema discovery and
identification of injectable
patterns

Logical conclusions are
drawn on basis of true/false
questions.

Blind injection

Database schema is
guessed by gathering
responses on basis of
true/false questions.

Attackers injects query to
discover the vulnerabilities like
select * from user where id=’12’
and pass=’1=0’; to check if
there is input validation or not.

Timing attacks

Information collection is
done through observing
response time taken in
answering questions

Keywords like waitfor are
inserted to delay execution if
query is true etc.

A Survey on the Detection of SQL Injection Attacks and Their Countermeasures

692 | J Inf Process Syst, Vol.13, No.4, pp.689~702, August 2017

5. Detecting and Preventing SQL Injection Attacks

In order to prevent SQLIAs many techniques have been proposed. These techniques include
defensive coding, encryption and obfuscation, static binding, dynamic binding, etc. The methods and
theories proposed vary from introducing middleware to developing completely different detection and
prevention algorithms. Concepts from cryptography, machine learning, query translation, etc., have
been developed. Listed below are some methods that have gained attention in the past years.

5.1 “Integrated Approach to Prevent SQL Injection Attack and Reflected Cross
Site Scripting Attack” [2]

Sharma et al. [2] proposed a query model generator that uses the hybrid approach. In this paper, they

proposed a model that is the modification of the existing MHAPSIA model (a model based hybrid
approach to prevent SQL injection attack in PHP). This is done by incorporating the logic to prevent
SQL injection attack and a proposed algorithm to prevent reflected Cross-site scripting attack.

5.2 “SQLIMW: A New Mechanism against SQL-Injection” [3]

Jiao et al. [3] proposed a new mechanism that defends against SQLIAs by adding a middleware (i.e.,
SQLIMW) in the system’s background. This paper introduced a more efficient and stronger security
barrier mechanism in SQLIMW to achieve the safe handling of SQLIMW.

SQLIMW has a double security barrier in similar computation circumstances. The realization
strategies are as follows:

� SQLIMW produces a private key, which no one (including system administrators), except for
itself, knows.

� In the user information storage system, it stores the user name and password provided. It does so
by obtaining the user name, password, and private key for the XOR and perform the hash
transformation.

� SQLIMW does the same processing and transformation as in the second step after obtaining the
original user data that has been approved by the authentication system. This user data is then
submitted to the stored procedure to do the injection detection.

5.3 “Runtime Monitors for Tautology Based SQL Injection Attacks” [4]

Dharam and Shiva [4] proposed a framework to handle tautology based SQLIAs in Java applications
by using a post-deployment monitoring technique. This paper extends the framework that was explained
in [5]. The basic idea behind their proposed framework is given below.

� Source codes contain certain critical variables that interact with the external world by accepting
user inputs, building queries, and processing them by accessing the internal database.

� To monitor the behavior of an application during its execution with respect to an already
identified critical variable in order to detect and prevent tautology based SQLIAs.

Bharti Nagpal, Naresh Chauhan, and Nanhay Singh

J Inf Process Syst, Vol.13, No.4, pp.689~702, August 2017 | 693

� When a critical variable violates the checkpoint and in turn follows an invalid path, the runtime
monitor immediately detects the abnormal behavior of the application due to the critical variable
and notifies the administrator of this.

� This model generates less false positives.

5.4 “An Authentication Scheme for Preventing SQL Injection Attack Using
Hybrid Encryption (PSQLIA-HBE)” [6]

Balasundram and Ramaraj [6] proposed an authentication scheme in which they proposed an

algorithm that uses both Advance Encryption Standard (AES) and Rivest-Shamir-Adleman (RSA)
algorithms to prevent an SQL Injection Attack. In this method, a unique secret key is assigned for every
client. On the server side, the server uses a combination of both a private key and public key for RSA
encryption. There are three phases, namely, the Registration, Login, and Verification phases. In this
method, two levels of encryption are applied to the login query. They are as given below.

� To encrypt the user name and password, symmetric key encryption is used with the help of the
user’s secret key.

� To encrypt the query, the scheme uses asymmetric key encryption by using the server’s public
key. The proposed scheme is very efficient as it needs 961.88 ms for encryption or decryption,
which is very negligible.

5.5 “TransSQL: A Translation and Validation-Based Solution for SQL-Injection
Attacks” [7]

Zhang et al. [7] have suggested a solution in the form of TransSQL to detect malicious SQL queries by

distinct environment by using a technique that automatically translates SQL queries into LDAP
equivalent queries and validates the results from SQL databases and LDAP databases. TransSQL
consists of two phases, which are the preprocessing phase and runtime phase.

� In the preprocessing phase, the information is retrieved from a SQL database to produce
corresponding LDAP schema and a LDIF (LDAP Data Interchange Format) file. Then it builds a
LDAP equivalent database by importing LDAP schema and LDIF data into the LDAP database.

� In the runtime phase, every SQL request is intercepted between the protected SQL database and a
web application and translates it into a LDAP equivalent request.

� SQL request is a SQL injection request if the results returning from both databases have
inconsistent responses. After detecting SQL injection request, the result from the SQL database
would be replaced with a null result.

5.6 “Effective SQL Injection Attack Reconstruction Using Network Recording” [8]

Pomeroy and Tan [8] have suggested a technique for finding vulnerabilities in a Web application,
such as a SQL Injection Attack, by using network recording. In this approach, network forensic
techniques and tools are used to analyze the network packets containing the GET and POST requests of
a web application. This approach uses a network based Intrusion Detection System (IDS) to trigger the
network recording of suspected application attacks.

A Survey on the Detection of SQL Injection Attacks and Their Countermeasures

694 | J Inf Process Syst, Vol.13, No.4, pp.689~702, August 2017

5.7 “Injection Attack Detection Using the Removal of SQL Query Attribute Values” [9]

Kim [9] presents an effective approach of removing a SQL query passed by the user in SQL query
attributes values. This approach uses combined static and dynamic analysis. The proposed method
utilizes a function that has the capability to detect the attribute values of a static SQL query in a web
application. This function also detects the SQL queries generated at the runtime. This approach profiles
the SQL query generated from normal users and compares this with the SQL query that is generated
dynamically by the attacker.

5.8 “CANDID: Dynamic Candidate Evaluations for Automatic Prevention of SQL
Injection Attacks” [10]

Bisht et al. [10] proposed a tool called Candidate Evaluation for Discovering Intent Dynamically

(CANDID), which at each SQL query location dynamically mines programmer intended query
structures and detects attacks by comparing intended SQL query against the structure of the actual
query issued. Program transformation is used by CANDID to retrofit Web applications written in Java.
The proposed algorithm records the programmer-intended SQL query structure on any input
(candidate inputs) from the legitimate user and compares this with the query structure generated with
the attackers input.

5.9 “Obfuscation-Based Analysis of SQL Injection Attacks” [11]

Halder and Cortesi [11] proposed a method on an obfuscation/deobfuscation-based technique, which
is used to detect SQLIAs in a SQL query before sending it to the database. This technique has three
phases:

� Static phase: In the static phase, SQL queries in the web application code are replaced by queries
in an obfuscated form.

� Dynamic phase: In this phase, user inputs are merged with the obfuscated query during run-time.
The dynamic verifier checks the obfuscated query at the atomic formula level to detect a SQL
Injection Attack.

� If no SQL injection is found during the verification phase, reconstruction of the original query
from the obfuscated query is carried out before submitting to the database.

5.10 “Analysis & Detection of SQL Injection Vulnerabilities via Automatic Test
Case Generation of Programs” [12]

Ruse et al. [12] have proposed an approach that uses automatic test case generation to detect SQL

injection vulnerabilities. The main idea behind this framework is based on creating a specific model that
deals with SQL queries automatically. It also captures the dependencies between various components of
the query. In this paper, they used the CREST (Automatic Test Generation Tool for C) test generator
and identified the conditions in which the queries are vulnerable.

Based on the experimental results of a few samples, the proposed methodology is able to identify the
causal set specifically.

Bharti Nagpal, Naresh Chauhan, and Nanhay Singh

J Inf Process Syst, Vol.13, No.4, pp.689~702, August 2017 | 695

5.11 “Use of Query Tokenization to Detect and Prevent SQL Injection Attacks” [13]

Lambert and Lin [13] have proposed a methodology that consists of tokenizing both the original
query and the one with an injection separately. After this is done every token constitutes an index for
the array and finally two arrays are formed. Their work consists of implementing a method that detects
a single quote, space, or double dashes. All strings before a single quote, before a space, or before double
dashes constitute a token. All the tokens grouped together to make an array The tokenization is done
for both the original query and the query with an injection. The obtained arrays are then compared and
if their lengths differ, an injection is detected, otherwise if their lengths do not differ this means that
there is no injection present.

5.12 “Hidden Web Crawling for SQL Injection Detection” [14]

Wang et al. [14] have proposed a hidden Web crawling technology that is based on the access
authorization data table (AADT). The Web crawlers can be authenticated and used to gain pages
behind login forms by recording authorization information through cookies, sessions, etc. This
methodology finds any hidden hyperlinks or forms in respond pages and traverses all of them, thereby
detecting any hidden web pages and improving the SQL injection detection. The target of studying the
web vulnerability detection mechanisms is to enhance the ability of the web scanner and to raise the
Web page coverage of crawler model.

5.13 “A Data-Centric Approach to Insider Attack Detection in Database Systems” [15]

Mathew et al. [15] proposed a methodology to address the problem of threats by an insider by
presenting a feature extraction method to model users’ access patterns. This paper emphasizes users’
access patterns by profiling the data points that users’ access. This is in contrast to analyzing the query
expressions that has been used in prior approaches. The data-centric approach is based on the
observation that query syntax alone is a poor discriminator of user intent.

5.14 “Combinatorial Approach for Preventing SQL Injection Attacks” [16]

This approach uses both static and dynamic approaches to detect a SQL injection. It is a signature
based SQL injection detection technique. In this approach the authors generated hotspots for SQL
queries in a Web application code, divided these hotspots into tokens, and then sent these tokens for
validation where they used Hirschberg's algorithm, which is a divide and conquer version of the
Needleman-Wunsch algorithm, to detect SQL Injection Attacks.

5.15 “An Approach for SQL Injection Vulnerability Detection” [17]

Analysis and Monitoring for Neutralizing SQL Injection Attacks (AMNESIA) is a fully automated
technique for detecting and preventing SQLIAs. It works in two phases (i.e., the static and dynamic
phases). During the static phase, the model for the different types of queries that an application can
legally generate at each point of access to the database is made. During the dynamic phase, queries are
intercepted before they are sent to the database and are checked against the statically built models. If the

A Survey on the Detection of SQL Injection Attacks and Their Countermeasures

696 | J Inf Process Syst, Vol.13, No.4, pp.689~702, August 2017

queries violate the model, then a SQL Injection Attack is detected and further queries are prevented
from accessing the database.

5.16 “On Automated Prepared Statement Generation to Remove SQL Injection
Vulnerabilities” [18]

Thomas et al. [18] presented an algorithm in which the prepared statements in SQL queries are

replaced by secure prepared statements for removing SQL vulnerabilities. These prepared statements
have a static structure that prevents SQLIAs from changing the logical structure of a prepared
statement. To ensure the efficiency and capability of the proposed algorithm four case studies of open
source projects were conducted.

5.17 “Evaluation of Anomaly Based Character Distribution Models in the
Detection of SQL Injection Attacks” [19]

Kiani et al. [19] have proposed a same character comparison (SCC) model. In this paper, the authors

studied FCD models and tried to overcome their limitation in detecting subtle attacks by proposing a
new SCC model. This approach operates by parsing the query section of HTTP requests and creates
profiles for each file. The SCC model intercepts HTTP requests and extracts the query section from the
request. The training phase is used to determine thresholds, which are applied during the testing phase
to identify anomalous requests.

5.18 “Preventing SQL Injection Attacks in Stored Procedures” [20]

Wei et al. [20] have proposed a fully automated technique for detecting and preventing SQLIA
incidents in stored procedures. This is done with the combination of static analysis and runtime
validation. The basic idea is that the control flow graph of the stored procedures can be represented as
an SQL-graph. By using an SQL-graph, they reduced the set of SQL statements. They retrieved a Finite
State Automaton (FSA) from the EXEC(@SQL) procedure call and checked SQL statements with the
inclusion of user inputs for compliance. They then flagged them as safe or unsafe.

5.19 “A Learning-Based Approach to the Detection of SQL Attacks” [21]

Valeur et al. [21] have proposed an intrusion detection system that uses the machine learning
method. The SQL queries generated in a Web application are learned to generate models. The runtime
SQL queries are compared with the generated model so as to check for discrepancies.

5.20 “JDBC Checker: A Static Analysis Tool for SQL/JDBC Applications” [22]

Gould et al. [22] have proposed a method in which Instruction-Set Randomization is used. This
method inputs random values into the runtime SQL query statement of a web application and checks
for volatility, which is used to detect SQLIAs. It places a proxy between the web server and the database
server and randomizes SQL queries.

Bharti Nagpal, Naresh Chauhan, and Nanhay Singh

J Inf Process Syst, Vol.13, No.4, pp.689~702, August 2017 | 697

5.21 “Web Application Security Assessment by Fault Injection and Behavior
Monitoring” [23]

Huang et al. [23] proposed a Web application security assessment framework called the Web

Application Vulnerability Scanner (WAVES). WAVES is a black box testing tool from the research
community that can be used to identify Web application vulnerabilities. WAVES uses a Web crawler to
find vulnerabilities in Web applications and generates attack codes by utilizing a pattern list and attack
techniques. Using the generated attack codes, the SQL Injection Attack vulnerabilities can be found. A
brief description of SQL injection approaches proposed by different authors is shown below in Table 3.

Table 3. Description of different approaches given by different authors

No Author Description

1 Sharma et al. [2] A query model generator based on hybrid approach for PHP applications.
Provides cent percent detection for known attacks.

2 Jiao et al. [3]
Enforcing authentication by introducing a middleware i.e. SQLIMW in the
middle. It implements hash mechanism which is faster than any other
encryption.

3 Dharam and Shiva [4]
Injection detection on the basis of identified valid path and critical
variables.

4 Balasundram and Ramaraj [6] RSA and AES encryption used to enforce login query formation.

5 Zhang et al. [7]
Duplicates database and queries into a LDAP database which is platform
independent and doesn’t propose any change in legacy web applications.

6 Pomeroy and Tan [8] Network forensics are used to analyse recorded network packets. It uses
network based IDS.

7 Kim [9] Removes attribute values of queries and then dynamic analysis is done on
basis of static profile generated.

8 Bisht et al. [10] Dynamically extracts the query structures from every SQL query location
which are intended by the developer.

9 Halder and Cortesi [11]
Queries are obfuscated and then verified, if clean, queries are
reconstructed for execution.

10 Ruse et al. [12]
Idea behind this framework is based on creating a specific model that deals
with SQL queries automatically.

11 Lambert and Lin [13] Based on length mismatch of tokenized original and injection queries.

12 Wang et al. [14] Web crawlers to detect hidden hyperlinks or web pages behind login
forms.

13 Mathew et al. [15] Feature extraction method which models user’s access pattern to detect
insider’s threat to database.

14 Thomas et al. [18] Proposes secure prepared statement to prevent attempt to change logical
structure of queries.

15 Kiani et al. [19]
Same character model which parses query, decides detection on basis of
threshold values given to profiles.

16 Gould et al. [22]
Proposes randomization of query by putting random values in runtime
query statement to detect injection.

17 Huang et al. [23]
Proposes a web crawler to find vulnerabilities by analyzing the attack and
pattern lists through the concept of machine learning.

A Survey on the Detection of SQL Injection Attacks and Their Countermeasures

698 | J Inf Process Syst, Vol.13, No.4, pp.689~702, August 2017

6. Comparative Analysis

The comparison between different techniques/approaches is shown below in Table 4.

Table 4. Comparison between different approaches/techniques

Technique/approach Source code
adjustment

Attack
detection

Attack
prevention

Additional
infrastructure Negatives

Hybrid approach Not needed Yes Yes N/A Doesn’t work for Zero
day exploits

SQLIMW Not needed Yes Yes Middleware Works for sign-in
applications only

Runtime monitors for
tautology

Not needed Yes Notification
generation

Software repository
to store source
code, critical

variables and paths

For Java applications,
detects tautology

attacks only

Attribute removal
(SQL query checker)

Needed Yes Yes Developer learning Possibility of false
positives depending on

data in symbol table.
CANDID Needed No Yes N/A Performance issues

which still need to be
resolved.

Obfuscation Not needed Yes Report
generation

N/A Becomes ineffective for
SQL queries which are
known only at runtime

like in Java servlets.

Query tokenization Not needed Yes Blocked
query

N/A Based on length factor
only.

Hidden Web crawlers Updates are
required to

be done
regularly

Yes Error
messages

Additional
hardware required

to store
authorization

record

Need an additional
mechanism to handle
other SQL injection

issues.

SQL DOM Needed Yes Yes Developer
Learning

Longer runtime, can’t
detect Stored

procedure type
injection

AMNESIA Not needed Yes Yes N/A Works for JSP based
applications only

Secure prepared
statements

Not needed Yes Yes N/A Becomes vulnerable to
iterative statements

SCC model Not needed Yes Alert trigger Minimal user
interaction

required

Works effectively for
UNION and Obfuscated

injections only
WAVES Not needed Yes Report

generation
N/A Cannot detect all

vulnerabilities.
Instruction-set
Randomization
(JDBC checker)

Needed Yes Blocked
query,
further

source code
adjustment is

proposed

Proxy, Developer
Learning and Key

Management

Becomes ineffective if
random value is

revealed
It doesn’t work for
illegal or logically

incorrect and
obfuscated queries.

IDS Not needed Yes Report
generation

Training set Many false positives
and negatives in case of

poor training set.

Bharti Nagpal, Naresh Chauhan, and Nanhay Singh

J Inf Process Syst, Vol.13, No.4, pp.689~702, August 2017 | 699

6.1 Comparison between Different Approaches and Different Types of SQL
Injection Attacks

The comparison between different approaches and different types of SQLIAs is shown below in Table

5 and Fig. 2.

Table 5. Comparison between different types of SQL Injection Attacks versus different approaches

Detection/prevention
method

Tautologies
Illegal/incorrect

queries
Union
queries

Piggy
backed
queries

Stored
procedures

Inference
Alternate
encodings

AMNESIA
Tautology checker

Extended MHAPSIA
Attribute removal

CANDID
SQL DOM

Prepared statements
SCC

JDBC checker N/A N/A N/A N/A N/A N/A N/A

WAVES N/A
IDS

Fig. 2. Number of SQL injection types versus different tools.

4

1

7

1

6

0

7

6

7

2

N
o

 o
f

S
Q

L
 I

n
je

ct
io

n
 t

y
p

es

Tools

No. of SQL Injection types

Detection/prevention is possible.

Detection/prevention is not possible.

Partial detection/prevention is possible.

A Survey on the Detection of SQL Injection Attacks and Their Countermeasures

700 | J Inf Process Syst, Vol.13, No.4, pp.689~702, August 2017

7. Conclusion

This paper surveys different SQL injection detection/prevention techniques and tools that have been
proposed in the last decade. These techniques vary from enforcing authentication for sign-in web
applications to tools that have been developed and proposed to analyze queries for any kind of
injection. From the survey of various articles/research papers it has been found that the current
techniques are not completely successful. Some have not been implemented yet and some techniques
are impractical in reality because they could not address all types of attacks. Keeping in view the
emerging web technologies and extensive usage of highly interactive content over the Internet, the
developer should follow proper prevention mechanism so as to achieve security against SQL injection.

References

[1] The Open Web Application Security Project, “OWASP Top ten project” https://www.owasp.org/index.php/
Category: OWASP_Top_Ten_Project.

[2] P. Sharma, R. Johari, and S. S. Sarma, “Integrated approach to prevent SQL injection attack and reflected cross
site scripting attack,” International Journal of System Assurance Engineering and Management, vol. 3, no. 4, pp.
343-351, 2012.

[3] G. Jiao, C. M. Xu, and J. Maohua, “SQLIMW: a new mechanism against SQL-Injection,” in Proceedings of the
International Conference on Computer Science & Service System (CSSS), Nanjing, China, 2012, pp. 1178-1180.

[4] R. Dharam and S. G. Shiva, “Runtime monitors for tautology based SQL injection attacks,” in Proceedings of the
International Conference on Cyber Security, Cyber Warfare and Digital Forensic (CyberSec), Kuala Lumpur, 2012,
pp. 253-258.

[5] R. Dharam and S. G. Shiva, “A framework for development of runtime monitors,” in Proceedings of the
International Conference on Computer & Information Science (ICCIS), Kuala Lumpur, 2012, pp. 953-957.

[6] I. Balasundaram and E. Ramaraj, “An authentication scheme for preventing SQL injection attack using hybrid
encryption (PSQLIA-HBE),” European Journal of Scientific Research, vol. 53, no. 3, pp. 359-368, 2011.

[7] K. X. Zhang, C. J. Lin, S. J. Chen, Y. Hwang, H. L. Huang, and F. H. Hsu, “TransSQL: a translation and
validation-based solution for SQL-injection attacks,” in Proceedings of the 1st International Conference on Robot,
Vision and Signal Processing (RVSP), Kaohsiung, China, 2011, pp. 248-251.

[8] A. Pomeroy and Q. Tan, “Effective SQL Injection attack reconstruction using network recording,”
in Proceedings of the 11th International Conference on Computer and Information Technology (CIT), Pafos, 2011,
pp. 552-556.

[9] J. G. Kim, “Injection attack detection using the removal of SQL query attribute values,” in Proceedings of the
International Conference on Information Science and Applications (ICISA), Jeju Island, Korea, 2011, pp. 1-7.

[10] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan, “CANDID: dynamic candidate evaluations for automatic
prevention of SQL injection attacks,” ACM Transactions on Information and System Security (TISSEC), vol. 13,
no. 2, article no. 14, 2010.

[11] R. Halder and A. Cortesi, “Obfuscation-based analysis of SQL injection attacks,” in Proceedings of IEEE
Symposium on Computers and Communications (ISCC), Riccione, Italy, 2010, pp. 931-938.

[12] M. Ruse, T. Sarkar, and S. Basu, “Analysis & detection of SQL injection vulnerabilities via automatic test case
generation of programs,” in Proceedings of the 10th IEEE/IPSJ International Symposium on Applications and the
Internet (SAINT), Seoul, Korea, 2010, pp. 31-37.

Bharti Nagpal, Naresh Chauhan, and Nanhay Singh

J Inf Process Syst, Vol.13, No.4, pp.689~702, August 2017 | 701

[13] N. Lambert and K. S. Lin, “Use of query tokenization to detect and prevent SQL injection attacks,” in
Proceedings of the 3rd IEEE International Conference on Computer Science and Information Technology
(ICCSIT), Chengdu, China, 2010, pp. 438-440.

[14] X. Wang, L. Wang, G. Wei, D. Zhang, and Y. Yang, “Hidden web crawling for SQL injection detection,”
in Proceedings of the 3rd IEEE International Conference on Broadband Network and Multimedia Technology (IC-
BNMT), Beijing, China, 2010, pp. 14-18.

[15] S. Mathew, M. Petropoulos, H. Q. Ngo, and S. Upadhyaya, “A data-centric approach to insider attack detection
in database systems,” in Proceedings of the 13th International Symposium on Recent Advances in Intrusion
Detection (RAID), Ottawa, Canada, 2010, pp. 382-401.

[16] R. Ezumalai and G. Aghila, “Combinatorial approach for preventing SQL injection attacks,” in Proceedings of
IEEE International Advance Computing Conference (IACC), Patiala, India, 2009, pp. 1212-1217.

[17] M. Junjin, “An approach for SQL injection vulnerability detection,” in Proceedings of the 6th International
Conference on Information Technology: New Generations (ITNG'09), Las Vegas, NV, 2009, pp. 1411-1414.

[18] S. Thomas, L. Williams, and T. Xie, “On automated prepared statement generation to remove SQL injection
vulnerabilities,” Information and Software Technology, vol. 51, no. 3, pp. 589-598, 2009.

[19] M. Kiani, A. Clark, and G. Mohay, “Evaluation of anomaly based character distribution models in the detection
of SQL injection attacks,” in Proceedings of the 3rd International Conference on Availability, Reliability and
Security (ARES’08), Barcelona, 2008, pp. 47-55.

[20] K. Wei, M. Muthuprasanna, and S. Kothari, “Preventing SQL injection attacks in stored procedures,”
in Proceedings of the Australian Software Engineering Conference (ASWEC), Sydney, 2006.

[21] F. Valeur, D. Mutz, and G. Vigna, “A learning-based approach to the detection of SQL attacks,” in Proceedings of
the 2nd International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA),
Vienna, Austria, 2005, pp. 123-140.

[22] C. Gould, Z. Su, and P. Devanbu, “JDBC checker: a static analysis tool for SQL/JDBC applications,”
in Proceedings of the 26th International Conference on Software Engineering (ICSE), Edinburgh, Scotland, 2004,
pp. 697-698.

[23] Y. W. Huang, S. K. Huang, T. P. Lin, and C. H. Tsai, “Web application security assessment by fault injection and
behavior monitoring,” in Proceedings of the 12th International Conference on World Wide Web, Budapest,
Hungary, 2003, pp. 148-159.

Bharti Nagpal

She received her M.Tech. (Information Systems) from Netaji Subash Institute Of
Technology (N.S.I.T), Delhi in 2010 and B.Tech. (Computer Eng.) from NIT
Kurukshetra in the year 1999. She has about 12 years of teaching experience.
Presently, she is working as Assistant Professor in Dept. of Computer Eng. at Ambedkar
Institute Of Advanced Communication Technology & Research(AIACT&R), Delhi (India).
Her research interest includes web technologies, information security, web mining, data
mining and data warehousing.

A Survey on the Detection of SQL Injection Attacks and Their Countermeasures

702 | J Inf Process Syst, Vol.13, No.4, pp.689~702, August 2017

Naresh Chauhan

He received his Ph.D. (Computer Eng.) from MD University, Rohtak (Haryana) in
2008, M.Tech. (Information Technology) from GGS IndraPrastha University, Delhi
in 2004 and B.Tech. (Computer Eng.) from NIT Kurukshetra, in the year 1992. He
has about 21 years of experience in teaching and Industries. He served Bharat
Electronics Ltd. and Motorola India Ltd. Presently, he is working as Professor &
Chairman in Dept. of Computer Eng. at YMCA University of Science & Technology,
Faridabad (India). His research interest includes Internet technologies, Software
Engineering, Software Testing and Real time systems. He has published one book on
Software Testing published from Oxford University Press, India (2010).

Nanhay Singh

He received his Ph.D. (Computer Eng.) from Kurukshetra University, Kurukshetra
(Haryana) in 2011, M.Tech. (Computer Eng.) from Kurukshetra University,
Kurukshetra in 1998. He has about 15 years of teaching experience. He served as
Assistant Professor in various prestigious institutes like HBTI, Kanpur(Uttar
Pradesh) etc. Presently, he is working as Associate Professor in Dept. of Computer
Eng. at Ambedkar Institute Of Advanced Communication Technology & Research
(AIACT&R), Delhi (India). His research interest includes web mining, web security,
web applications and data mining. He has more than 25 research publications in
various national/international journals/conferences.

