Acknowledgement
Supported by : National Taiwan University, Ministry of Science and Technology of Taiwan
References
- Adhikari, U. and Scheiner, S. (2013), "Preferred configurations of peptide-peptide interactions", J. Phys. Chem. A, 117(2), 489-496. https://doi.org/10.1021/jp310942u
- Ayvaz, H., Plans, M., Riedl, K.M., Schwartz, S.J. and Rodrguez-Saona, L.E. (2013), "Application of infrared microspectroscopy and chemometric analysis for screening the acrylamide content in potato chips", Anal. Meth., 5(8), 2020-2027. https://doi.org/10.1039/c3ay00020f
- Bartlett, R.J. (1989), "Coupled-cluster approach to molecular structure and spectra: A Step toward predictive quantum chemistry", J. Phys. Chem., 93(5), 1697-1708. https://doi.org/10.1021/j100342a008
- Boutis, T. (1992), Proton Transfer in Hydrogen Bonded Systems, Plenum, New York, U.S.A.
- Boys, S.F. and Bernardi, F. (1970), "The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors", Mol. Phys., 19(4), 553-566. https://doi.org/10.1080/00268977000101561
- Cato, M.A., Majumdar, D., Roszak, S. and Leszczynski, J. (2013), "Exploring relative thermodynamic stabilities of formic acid and formamide dimers-role of low-frequency hydrogen-bond vibrations", J. Chem. Theor. Comp., 9(2), 1016-1026. https://doi.org/10.1021/ct300889b
- Duarte, A.S.R., Amorim Da Costa, A.M. and Amado, A.M. (2005), "On the conformation of neat acrylamide dimers-a study by ab initio calculations and vibrational spectroscopy", J. Mol. Struct. Theochem., 723(1-3), 63-68. https://doi.org/10.1016/j.theochem.2005.02.008
- Dunning, T.H. (1989), "Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen", J. Chem. Phys., 90(2), 1007-1023. https://doi.org/10.1063/1.456153
- Eckert-Maksic, M., Antol, I. and Vazdar, M. (2014), "Acetamide as the model of the peptide bond: Nonadiabatic photodynamical simulations in the gas phase and in the argon matrix", Comput. Theor. Chem., 1040-1041, 136-143. https://doi.org/10.1016/j.comptc.2014.02.025
- Frey, J.A. and Leutwyler, S.J. (2006), "An ab initio benchmark study of hydrogen bonded formamide dimers", J. Phys. Chem. A, 110(45), 12512-12818. https://doi.org/10.1021/jp064730q
- Gaussian09 RevisionA.1 (2009), Expanding the Limit of Computational Chemistry, Gaussian, Inc., Wallingford CT, U.S.A.
- Girma, K.B., Lorenz, V., Blaurock, S. and Edelmann, F.T. (2005), "Coordination chemistry of acrylamide", Coord. Chem. Rev., 249(11-12), 1283-1293. https://doi.org/10.1016/j.ccr.2005.01.028
- Grabowski, S.J. (2006), Hydrogen Bonding-New Insights, Springer, Dordrecht, South Holland, the Netherlands.
- Grabowski, S.J., Sokalski, W.A. and Leszczynski, J. (2006), "The possible covalent nature of N-H...O hydrogen bonds in formamide dimer and related systems: An ab initio study", J. Phys. Chem. A, 110(14), 4772-4779. https://doi.org/10.1021/jp055613i
- Guo, Y. and Wu, P. (2008), "FTIR spectroscoscopic study of the acrylamide states in AOT reversed micelles", J. Mol. Struct., 883-884, 31-37. https://doi.org/10.1016/j.molstruc.2007.11.009
- Helgaker, T., Klopper, W., Koch, H. and Noga, J. (1997), "Basis-set convergence of correlated calculations on water", J. Chem. Phys., 106(23), 9639-9646. https://doi.org/10.1063/1.473863
- Jeffrey, G.A. and Saenger, W. (1991), Hydrogen Bonding in Biological Structures, Springer, New York, U.S.A.
- Jiang, Y., Zhou, F., Wen, X., Yang, L., Zhao, G., Wang, H., Wang, H., Zhai, Y., Wu, J., Liu, K. and Chen, J. (2014), "Terahertz absorption spectroscopy of benzamide, acrylamide, caprolactam, salicylamide, and sulfanilamide in the solid state", J. Spectrosc.
- Jonathan, N. (1961), "The infrared and raman spectra and structure of acrylamide", J. Mol. Spec., 6(2), 205-214. https://doi.org/10.1016/0022-2852(61)90243-0
- Kemnitz, C.R. and Loewen, M.J. (2007), "Amide resonance correlates with a breadth of C-N rotation barriers", J. Am. Chem. Soc., 129(9), 2521-2528. https://doi.org/10.1021/ja0663024
- Mardyukov, A., Sanchez-Garcia, E., Rodziewicz, P., Doltsinis, N.L. and Sander, W. (2007), "Formamide dimers: A computational and matrix isolation study", J. Phys. Chem. A, 111(42), 10552-10561. https://doi.org/10.1021/jp074927y
- Nagaraju, M. and Sastry, G.N. (2011), "Effect of alkyl substitution on H-bond strength of substituted amidealcohol complexes", J. Mol. Model., 17(7), 1801-1816. https://doi.org/10.1007/s00894-010-0886-2
-
Riley, K.E., Pitonak, M., Cerny, J. and Hobza, P. (2010), "On the structure and geometry of biomolecular binding motifs (hydrogen-bonding, stacking, X-H...
${\pi}$ ): WFT and DFT calculations", J. Chem. Theor. Comput., 6(1), 66-80. https://doi.org/10.1021/ct900376r - Sharma, B.B., Murli, C. and Sharma, S.M. (2013), "Hydrogen bonds and polymerization in acrylamide under pressure", J. Raman Spectrosc., 44(5), 785-790. https://doi.org/10.1002/jrs.4264
- Singh, S., Srivastava, K. and Singh, D.K. (2014), "Hydrogen bonding patterns in different acrylamide- water clusters: Microsolvation probed by micro raman spectroscopy and DFT calculations", RSC Adv., 4, 1761-1774. https://doi.org/10.1039/C3RA42707B
- Wang, Y.S., Lin, Y.D. and Chao, S.D. (2016), "Hydrogen-bonding structures and energetics of acrylamide isomers, tautomers, and dimers: An ab initio study and spectral analysis", J. Chin. Chem. Soc., 63(12), 968-976. https://doi.org/10.1002/jccs.201600273