DOI QR코드

DOI QR Code

Comparative studies of density functionals in modelling hydrogen bonding energetics of acrylamide dimers

  • Lin, Yi-De (Institute of Applied Mechanics, National Taiwan University) ;
  • Wang, Yi-Siang (Institute of Applied Mechanics, National Taiwan University) ;
  • Chao, Sheng D. (Institute of Applied Mechanics, National Taiwan University)
  • 투고 : 2016.09.30
  • 심사 : 2017.05.12
  • 발행 : 2017.09.25

초록

Intermolecular interaction energies and conformer geometries of the hydrogen bonded acrylamide dimers have been studied by using the second-order Møller-Plesset (MP2) perturbation theory and the density functional theory (DFT) with 17 density functionals. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) have been used to study the basis set effects. The DFT calculated interaction energies are compared to the reference energy data calculated by the MP2 method and the coupled cluster method at the complete basis set (CCSD(T)/CBS) limit in order to determine the relative performance of the studied density functionals. Overall, dispersion-energy-corrected density functionals outperform uncorrected ones. The ${\omega}B97XD$ density functional is particularly effective in terms of both accuracy and computational cost in estimating the reference energy values using small basis sets and is highly recommended for similar calculations for larger systems.

키워드

과제정보

연구 과제 주관 기관 : National Taiwan University, Ministry of Science and Technology of Taiwan

참고문헌

  1. Adhikari, U. and Scheiner, S. (2013), "Preferred configurations of peptide-peptide interactions", J. Phys. Chem. A, 117(2), 489-496. https://doi.org/10.1021/jp310942u
  2. Ayvaz, H., Plans, M., Riedl, K.M., Schwartz, S.J. and Rodrguez-Saona, L.E. (2013), "Application of infrared microspectroscopy and chemometric analysis for screening the acrylamide content in potato chips", Anal. Meth., 5(8), 2020-2027. https://doi.org/10.1039/c3ay00020f
  3. Bartlett, R.J. (1989), "Coupled-cluster approach to molecular structure and spectra: A Step toward predictive quantum chemistry", J. Phys. Chem., 93(5), 1697-1708. https://doi.org/10.1021/j100342a008
  4. Boutis, T. (1992), Proton Transfer in Hydrogen Bonded Systems, Plenum, New York, U.S.A.
  5. Boys, S.F. and Bernardi, F. (1970), "The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors", Mol. Phys., 19(4), 553-566. https://doi.org/10.1080/00268977000101561
  6. Cato, M.A., Majumdar, D., Roszak, S. and Leszczynski, J. (2013), "Exploring relative thermodynamic stabilities of formic acid and formamide dimers-role of low-frequency hydrogen-bond vibrations", J. Chem. Theor. Comp., 9(2), 1016-1026. https://doi.org/10.1021/ct300889b
  7. Duarte, A.S.R., Amorim Da Costa, A.M. and Amado, A.M. (2005), "On the conformation of neat acrylamide dimers-a study by ab initio calculations and vibrational spectroscopy", J. Mol. Struct. Theochem., 723(1-3), 63-68. https://doi.org/10.1016/j.theochem.2005.02.008
  8. Dunning, T.H. (1989), "Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen", J. Chem. Phys., 90(2), 1007-1023. https://doi.org/10.1063/1.456153
  9. Eckert-Maksic, M., Antol, I. and Vazdar, M. (2014), "Acetamide as the model of the peptide bond: Nonadiabatic photodynamical simulations in the gas phase and in the argon matrix", Comput. Theor. Chem., 1040-1041, 136-143. https://doi.org/10.1016/j.comptc.2014.02.025
  10. Frey, J.A. and Leutwyler, S.J. (2006), "An ab initio benchmark study of hydrogen bonded formamide dimers", J. Phys. Chem. A, 110(45), 12512-12818. https://doi.org/10.1021/jp064730q
  11. Gaussian09 RevisionA.1 (2009), Expanding the Limit of Computational Chemistry, Gaussian, Inc., Wallingford CT, U.S.A.
  12. Girma, K.B., Lorenz, V., Blaurock, S. and Edelmann, F.T. (2005), "Coordination chemistry of acrylamide", Coord. Chem. Rev., 249(11-12), 1283-1293. https://doi.org/10.1016/j.ccr.2005.01.028
  13. Grabowski, S.J. (2006), Hydrogen Bonding-New Insights, Springer, Dordrecht, South Holland, the Netherlands.
  14. Grabowski, S.J., Sokalski, W.A. and Leszczynski, J. (2006), "The possible covalent nature of N-H...O hydrogen bonds in formamide dimer and related systems: An ab initio study", J. Phys. Chem. A, 110(14), 4772-4779. https://doi.org/10.1021/jp055613i
  15. Guo, Y. and Wu, P. (2008), "FTIR spectroscoscopic study of the acrylamide states in AOT reversed micelles", J. Mol. Struct., 883-884, 31-37. https://doi.org/10.1016/j.molstruc.2007.11.009
  16. Helgaker, T., Klopper, W., Koch, H. and Noga, J. (1997), "Basis-set convergence of correlated calculations on water", J. Chem. Phys., 106(23), 9639-9646. https://doi.org/10.1063/1.473863
  17. Jeffrey, G.A. and Saenger, W. (1991), Hydrogen Bonding in Biological Structures, Springer, New York, U.S.A.
  18. Jiang, Y., Zhou, F., Wen, X., Yang, L., Zhao, G., Wang, H., Wang, H., Zhai, Y., Wu, J., Liu, K. and Chen, J. (2014), "Terahertz absorption spectroscopy of benzamide, acrylamide, caprolactam, salicylamide, and sulfanilamide in the solid state", J. Spectrosc.
  19. Jonathan, N. (1961), "The infrared and raman spectra and structure of acrylamide", J. Mol. Spec., 6(2), 205-214. https://doi.org/10.1016/0022-2852(61)90243-0
  20. Kemnitz, C.R. and Loewen, M.J. (2007), "Amide resonance correlates with a breadth of C-N rotation barriers", J. Am. Chem. Soc., 129(9), 2521-2528. https://doi.org/10.1021/ja0663024
  21. Mardyukov, A., Sanchez-Garcia, E., Rodziewicz, P., Doltsinis, N.L. and Sander, W. (2007), "Formamide dimers: A computational and matrix isolation study", J. Phys. Chem. A, 111(42), 10552-10561. https://doi.org/10.1021/jp074927y
  22. Nagaraju, M. and Sastry, G.N. (2011), "Effect of alkyl substitution on H-bond strength of substituted amidealcohol complexes", J. Mol. Model., 17(7), 1801-1816. https://doi.org/10.1007/s00894-010-0886-2
  23. Riley, K.E., Pitonak, M., Cerny, J. and Hobza, P. (2010), "On the structure and geometry of biomolecular binding motifs (hydrogen-bonding, stacking, X-H...${\pi}$): WFT and DFT calculations", J. Chem. Theor. Comput., 6(1), 66-80. https://doi.org/10.1021/ct900376r
  24. Sharma, B.B., Murli, C. and Sharma, S.M. (2013), "Hydrogen bonds and polymerization in acrylamide under pressure", J. Raman Spectrosc., 44(5), 785-790. https://doi.org/10.1002/jrs.4264
  25. Singh, S., Srivastava, K. and Singh, D.K. (2014), "Hydrogen bonding patterns in different acrylamide- water clusters: Microsolvation probed by micro raman spectroscopy and DFT calculations", RSC Adv., 4, 1761-1774. https://doi.org/10.1039/C3RA42707B
  26. Wang, Y.S., Lin, Y.D. and Chao, S.D. (2016), "Hydrogen-bonding structures and energetics of acrylamide isomers, tautomers, and dimers: An ab initio study and spectral analysis", J. Chin. Chem. Soc., 63(12), 968-976. https://doi.org/10.1002/jccs.201600273