DOI QR코드

DOI QR Code

Evaluation on mechanical enhancement and fire resistance of carbon nanotube (CNT) reinforced concrete

  • Yu, Zechuan (Department of Architecture and Civil Engineering, City University of Hong Kong) ;
  • Lau, Denvid (Department of Architecture and Civil Engineering, City University of Hong Kong)
  • Received : 2016.10.15
  • Accepted : 2017.05.12
  • Published : 2017.09.25

Abstract

To cope with the demand on giant and durable buildings, reinforcement of concrete is a practical problem being extensively investigated in the civil engineering field. Among various reinforcing techniques, fiber-reinforced concrete (FRC) has been proven to be an effective approach. In practice, such fibers include steel fibers, polyvinyl alcohol (PVA) fibers, polyacrylonitrile (PAN) carbon fibers and asbestos fibers, with the length scale ranging from centimeters to micrometers. When advancing such technique down to the nanoscale, it is noticed that carbon nanotubes (CNTs) are stronger than other fibers and can provide a better reinforcement to concrete. In the last decade, CNT-reinforced concrete attracts a lot of attentions in research. Despite high cost of CNTs at present, the growing availability of carbon materials might push the usage of CNTs into practice in the near future, making the reinforcement technique of great potential. A review of existing research works may constitute a conclusive reference and facilitate further developments. In reference to the recent experimental works, this paper reports some key evaluations on CNT-reinforced cementitious materials, covering FRC mechanism, CNT dispersion, CNT-cement structures, mechanical properties and fire safety. Emphasis is placed on the interplay between CNTs and calcium silicate hydrate (C-S-H) at the nanoscale. The relationship between the CNTs-cement structures and the mechanical enhancement, especially at a high-temperature condition, is discussed based on molecular dynamics simulations. After concluding remarks, challenges to improve the CNTs reinforcement technique are proposed.

Keywords

Acknowledgement

Supported by : Croucher Foundation, City University of Hong Kong

References

  1. Abu Al-Rub, R.K., Ashour, A.I. and Tyson, B.M. (2012), "On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites", Constr. Build. Mater., 35, 647-655. https://doi.org/10.1016/j.conbuildmat.2012.04.086
  2. Allen, A.J., Thomas, J.J. and Jennings, H.M. (2007), "Composition and density of nanoscale calciumsilicate-hydrate in cement", Nat. Mater., 6(4), 311-316. https://doi.org/10.1038/nmat1871
  3. Bangi, M.R. and Horiguchi, T. (2011), "Pore pressure development in hybrid fibre-reinforced high strength concrete at elevated temperatures", Cement Concrete Res., 41(11), 1150-1156. https://doi.org/10.1016/j.cemconres.2011.07.001
  4. Betterman, L., Ouyang, C. and Shah, S. (1995), "Fiber-matrix interaction in microfiber-reinforced mortar", Adv. Cement Bas. Mater., 2(2), 53-61. https://doi.org/10.1016/1065-7355(95)90025-X
  5. Brandt, A.M. (2008), "Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering", Compos. Struct., 86(1-3), 3-9. https://doi.org/10.1016/j.compstruct.2008.03.006
  6. Buyukozturk, O., Buehler, M.J., Lau, D. and Tuakta, C. (2011), "Structural solution using molecular dynamics: Fundamentals and a case study of epoxy-silica interface", J. Sol. Struct., 48(14), 2131-2140. https://doi.org/10.1016/j.ijsolstr.2011.03.018
  7. Chiang, W.S., Fratini, E., Baglioni, P., Liu, D. and Chen, S.H. (2012), "Microstructure determination of calcium-silicate-hydrate gobules by small-angle neutron scattering", J. Phys. Chem. C, 116(8), 5055-5061. https://doi.org/10.1021/jp300745g
  8. Chow, C.L. and Chow, W.K. (2010), "Heat release rate of accidental fire in a supertall building residential flat", Build. Environ., 45(7), 1632-1640. https://doi.org/10.1016/j.buildenv.2010.01.010
  9. Chow, C.L. and Chow, W.K. (2009), "Fire safety aspects of refuge floors in supertall buildings with computational fluid dynamics", J. Civil Eng. Manage., 15(3), 225-236. https://doi.org/10.3846/1392-3730.2009.15.225-236
  10. Chow, W.K., Gao, Y. and Chow, C.L. (2006), "A review on fire safety in buildings with glass facade", J. Appl. Fire Sci., 16(3), 201-223. https://doi.org/10.2190/AF.16.3.b
  11. Collins, F., Lambert, J. and Duan, W.H. (2012), "The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures", Cement Concrete Compos., 34(2), 201-207. https://doi.org/10.1016/j.cemconcomp.2011.09.013
  12. Dolado, J.S., Griebel, M., Hamaekers, J. and Heber, F. (2011), "The nano-branched structure of cementitious calcium-silicate-hydrate gel", J. Mater. Chem., 21(12), 4445-4449. https://doi.org/10.1039/c0jm04185h
  13. Eftekhari, M., Ardakani, S.H. and Mohammadi, S. (2014), "An XFEM multiscale approach for fracture analysis of carbon nanotube reinforced concrete", Theoret. Appl. Fract. Mech., 72, 64-75. https://doi.org/10.1016/j.tafmec.2014.06.005
  14. Fletcher, I.A., Borg, A., Hitchen, N. and Welch, S. (2006), "Performance of concrete in fire: A review of the state of the art, with a case study of the windsor tower fire", Proceedings of the 4th International Workshop in Structures in Fire, Aveiro, Portugal, May, 779-790.
  15. Gangsa, C., Flanders, L.S. and Landis, E.N. (2015), "A 3D Investigation of ITZ Porosity and Pore Connectivity Relevant to Damage and Transport Properties", Proceedings of the 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures, 408-413.
  16. Geng, Y., Liu, M.Y., Li, J., Shi, X.M. and Kim, J.K. (2008), "Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites", Compos. Part A: Appl. Sci. Manufact., 39(12), 1876-1883. https://doi.org/10.1016/j.compositesa.2008.09.009
  17. Gunes, O., Lau, D., Tuakta, C. and Buyukozturk, O. (2013), "Ductility of FRP-concrete systems: Investigations at different length scales", Constr. Build. Mater., 49, 915-925. https://doi.org/10.1016/j.conbuildmat.2012.10.017
  18. Han, B., Sun, S., Ding, S., Zhang, L., Yu, X. and Ou, J. (2015), "Review of nanocarbon-engineered multifunctional cementitious composites", Compos. Part A: Appl. Sci. Manufact., 70, 69-81. https://doi.org/10.1016/j.compositesa.2014.12.002
  19. Hansen, T.C. (1965), "Influence of aggregate and voids on modulus of elasticity of concrete, cement mortar, and cement paste", J. Proc., 62(2), 193-216.
  20. Heikal, M., Al-Duaij, O.K. and Ibrahim, N.S. (2015), "Microstructure of composite cements containing blast-furnace slag and silica nano-particles subjected to elevated thermally treatment temperature", Constr. Build. Mater., 93, 1067-1077. https://doi.org/10.1016/j.conbuildmat.2015.05.042
  21. Hirsch, A. (2002), "Functionalization of single-walled carbon nanotubes", Angewandte Chem. Int. Ed., 41(11), 1853-1859. https://doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
  22. Hlavacek, P., Smilauer, V., Padevet, P., Nasibulina, L. and Nasibulin, A.G. (2011), "Cement grains with surface-shyntetized carbon nanofibres: Mechanical properties and nanostructure", Proceedings of the 3rd International Conference NANOCON, 75-80.
  23. Holland, R., Kurtis, K. and Kahn, L. (2016), "Effect of different concrete materials on the corrosion of the embedded reinforcing steel", Corros. Steel Concrete Struct., 131.
  24. Hou, D., Zhu, Y., Lu, Y. and Li, Z. (2014), "Mechanical properties of calcium silicate hydrate (C-S-H) at nano-scale: A molecular dynamics study", Mater. Chem. Phys., 146(3), 503-511. https://doi.org/10.1016/j.matchemphys.2014.04.001
  25. Hunashyal, A.M., Tippa, S.V., Quadri, S.S. and Banapurmath, N.R. (2011), "Experimental investigation on effect of carbon nanotubes and carbon fibres on the behavior of plain cement mortar composite round bars under direct tension", ISRN Nanotechnol., 6.
  26. Kalifa, P., Chene, G. and Galle, C. (2001), "High-temperature behaviour of HPC with polypropylene fibres: From spalling to microstructure", Cement Concrete Res., 31(10), 1487-1499. https://doi.org/10.1016/S0008-8846(01)00596-8
  27. Kashiwagi, T., Du, F., Winey, K.I., Groth, K.M., Shields, J.R., Bellayer, S.P. and Douglas, J.F. (2005), "Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: Effects of nanotube dispersion and concentration", Polym., 46(2), 471-481. https://doi.org/10.1016/j.polymer.2004.10.087
  28. Kashiwagi, T., Grulke, E., Hilding, J., Groth, K., Harris, R., Butler, K. and Douglas, J. (2004), "Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites", Polym., 45(12), 4227-4239. https://doi.org/10.1016/j.polymer.2004.03.088
  29. Khaliq, W. and Kodur, V. (2011), "Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures", Cement Concrete Res., 41(11), 1112-1122. https://doi.org/10.1016/j.cemconres.2011.06.012
  30. Kodur, V.K.R. and Phan, L. (2007), "Critical factors governing the fire performance of high strength concrete systems", Fire Safety J., 42(6-7), 482-488. https://doi.org/10.1016/j.firesaf.2006.10.006
  31. Konsta-Gdoutos, M.S., Metaxa, Z.S. and Shah, S.P. (2010a), "Highly dispersed carbon nanotube reinforced cement based materials", Cement Concrete Res., 40(7), 1052-1059. https://doi.org/10.1016/j.cemconres.2010.02.015
  32. Konsta-Gdoutos, M.S., Metaxa, Z.S. and Shah, S.P. (2010b), "Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites", Cement Concrete Compos., 32(2), 110-115. https://doi.org/10.1016/j.cemconcomp.2009.10.007
  33. Landis, E., Gangsa, C. and Flanders, L. (2016), "Revisiting critical flaws in cement-based composites", J. Nanomech. Micromech., 6(4), 04016007. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000111
  34. Lau, D., Broderick, K., Buehler, M.J. and Buyukozturk, O. (2014), "A robust nanoscale experimental quantification of fracture energy in a bilayer material system", Proceedings of the National Academy of Sciences, 111(33), 11990-11995.
  35. Lau, D. and Buyukozturk, O. (2010), "Fracture characterization of concrete/epoxy interface affected by moisture", Mech. Mater., 42(12), 1031-1042. https://doi.org/10.1016/j.mechmat.2010.09.001
  36. Lau, D., Buyukozturk, O. and Buehler, M.J. (2012), "Characterization of the intrinsic strength between epoxy and silica using a multiscale approach", J. Mater. Res., 27(14), 1787-1796. https://doi.org/10.1557/jmr.2012.96
  37. Lau, D., Qiu, Q., Zhou, A. and Chow, C.L. (2016), "Long term performance and fire safety aspect of FRP composites used in building structures", Constr. Build. Mater., 126(15), 573-585. https://doi.org/10.1016/j.conbuildmat.2016.09.031
  38. Lau, D., Yu, Z. and Buyukozturk, O. (2015), "Mesoscale modeling of cement matrix using the concept of building block", MRS Online Proc. Libr. Arch., 1759.
  39. Lee, J., Mahendra, S. and Alvarez, P.J.J. (2010), "Nanomaterials in the construction industry: A review of their applications and environmental health and safety considerations", ACS Nano, 4(7), 3580-3590. https://doi.org/10.1021/nn100866w
  40. Li, G.Y., Wang, P.M. and Zhao, X. (2005), "Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes", Carbon, 43(6), 1239-1245. https://doi.org/10.1016/j.carbon.2004.12.017
  41. Li, Q., Liu, J. and Xu, S. (2015), "Progress in research on carbon nanotubes reinforced cementitious composites", Adv. Mater. Sci. Eng., 16.
  42. Lo Monte, F., Bamonte, P. and Gambarova, P.G. (2015), "Physical and mechanical properties of heatdamaged structural concrete containing expanded polystyrene syntherized particles", Fire Mater., 39(1), 58-71. https://doi.org/10.1002/fam.2230
  43. Lu, Z., Hou, D., Meng, L., Sun, G., Lu, C. and Li, Z. (2015), "Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties", RSC Adv., 5(122), 100598-100605. https://doi.org/10.1039/C5RA18602A
  44. Ludvig, P., Calixto, J.M., Ladeira, L.O. and Gaspar, I.C.P. (2011), "Using converter dust to produce low cost cementitious composites by in situ carbon nanotube and nanofiber synthesis", Mater., 4(3), 575. https://doi.org/10.3390/ma4030575
  45. Luo, J., Duan, Z. and Li, H. (2009), "The influence of surfactants on the processing of multi‐walled carbon nanotubes in reinforced cement matrix composites", Phys. Status Sol. (a), 206(12), 2783-2790.
  46. Ma, P.C., Siddiqui, N.A., Marom, G. and Kim, J.K. (2010), "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review", Compos. Part A: Appl. Sci. Manufact., 41(10), 1345-1367. https://doi.org/10.1016/j.compositesa.2010.07.003
  47. Masoero, E., Gado, E., Pellenq, R.M., Ulm, F.J. and Yip, S. (2012), "Nanostructure and nanomechanics of cement: Polydisperse colloidal packing", Phys. Rev. Lett., 109(15), 155503. https://doi.org/10.1103/PhysRevLett.109.155503
  48. Metaxa, Z.S., Konsta-Gdoutos, M.S. and Shah, S.P. (2013), "Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency", Cement Concrete Compos., 36, 25-32. https://doi.org/10.1016/j.cemconcomp.2012.10.009
  49. Metaxa, Z.S., Seo, J.W.T., Konsta-Gdoutos, M.S., Hersam, M.C. and Shah, S.P. (2012), "Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials", Cement Concrete Compos., 34(5), 612-617. https://doi.org/10.1016/j.cemconcomp.2012.01.006
  50. Mudimela, P.R., Nasibulina, L.I., Nasibulin, A.G., Cwirzen, A., Valkeap, M. and Kauppinen, E.I. (2009), "Synthesis of carbon nanotubes and nanofibers on silica and cement matrix materials", J. Nanomater., 29, 1-4.
  51. Mukhopadhyay, A.K. (2011), "Next-generation nano-based concrete construction products: A review", Nanotechnology in Civil Infrastructure: A Paradigm Shift, 207-223, Springer Berlin Heidelberg, Berlin, Heidelberg, Germany.
  52. Musso, S., Tulliani, J.M., Ferro, G. and Tagliaferro, A. (2009), "Influence of carbon nanotubes structure on the mechanical behavior of cement composites", Compos. Sci. Technol., 69(11-12), 1985-1990. https://doi.org/10.1016/j.compscitech.2009.05.002
  53. Nadiv, R., Shtein, M., Refaeli, M., Peled, A. and Regev, O. (2016), "The critical role of nanotube shape in cement composites", Cement Concrete Compos., 71, 166-174. https://doi.org/10.1016/j.cemconcomp.2016.05.012
  54. Nasibulin, A.G., Koltsova, T., Nasibulina, L.I., Anoshkin, I.V., Semencha, A., Tolochko, O.V. and Kauppinen, E.I. (2013), "A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles", Acta Mater., 61(6), 1862-1871. https://doi.org/10.1016/j.actamat.2012.12.007
  55. Ngo, M., Ibrahimbegovic, A. and Brancherie, D. (2014), "Thermomechanics failure of RC composites: Computational approach with enhanced beam model", Coupled Syst. Mech., 3(1), 111-145. https://doi.org/10.12989/csm.2014.3.1.111
  56. Nochaiya, T. and Chaipanich, A. (2011), "Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials", Appl. Surf. Sci., 257(6), 1941-1945. https://doi.org/10.1016/j.apsusc.2010.09.030
  57. Oesch, T., Landis, E. and Kuchma, D. (2016), "Conventional concrete and UHPC performance-damage relationships identified using computed tomography", J. Eng. Mech., 142(12), 04016101. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001168
  58. Palkovic, S.D., Brommer, D.B., Kupwade-Patil, K., Masic, A., Buehler, M.J. and Buyukozturk, O. (2016), "Roadmap across the mesoscale for durable and sustainable cement paste-a bioinspired approach", Constr. Build. Mater., 115, 13-31. https://doi.org/10.1016/j.conbuildmat.2016.04.020
  59. Parveen, S., Rana, S. and Fangueiro, R. (2013), "A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites", J. Nanomater., 2013(710175).
  60. Pellenq, R.J.M., Kushima, A., Shahsavari, R., Van Vliet, K.J., Buehler, M.J., Yip, S. and Ulm, F.J. (2009), "A realistic molecular model of cement hydrates", Proceedings of the National Academy of Sciences, 106(38), 16102-16107.
  61. Plimpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117(1), 1-19. https://doi.org/10.1006/jcph.1995.1039
  62. Prieto Rabade, M., Tanner, P., Andrade Perdrix, M.D.C. and Fernandez, M. (2013), "Experimental and numerical study of bond response in structural concrete with corroded steel bars", Proceedings of the the IABSE Conference Rotterdam: Assessment, Upgrading and Refurbishment of Infrastructures, IABSE Symposium Report, 99(6), 1752-1759, Rotterdam, The Netherlands.
  63. Qiu, Q. and Lau, D. (2016), "The sensitivity of acoustic-laser technique for detecting the defects in CFRPbonded concrete systems", J. Nondestruct. Eval., 35(2), 33. https://doi.org/10.1007/s10921-016-0351-y
  64. Richard, C., Balavoine, F., Schultz, P., Ebbesen, T.W. and Mioskowski, C. (2003), "Supramolecular selfassembly of lipid derivatives on carbon nanotubes", Sci., 300(5620), 775-778. https://doi.org/10.1126/science.1080848
  65. Sanchez, F. and Sobolev, K. (2010), "Nanotechnology in concrete-a review", Constr. Build. Mater., 24(11), 2060-2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014
  66. Scrivener, K.L., Crumbie, A.K. and Laugesen, P. (2004), "The interfacial transition zone (ITZ) between cement paste and aggregate in concrete", Interf. Sci., 12(4), 411-421. https://doi.org/10.1023/B:INTS.0000042339.92990.4c
  67. Shahsavari, R., Pellenq, R.J.M. and Ulm, F.J. (2011), "Empirical force fields for complex hydrated calciosilicate layered materials", Phys. Chem. Chem. Phys., 13(3), 1002-1011. https://doi.org/10.1039/C0CP00516A
  68. Shalchy, F. and Rahbar, N. (2015), "Nanostructural characteristics and interfacial properties of polymer fibers in cement matrix", ACS Appl. Mater. Interf., 7(31), 17278-17286. https://doi.org/10.1021/acsami.5b04344
  69. Sun, S., Yu, X., Han, B. and Ou, J. (2013), "In situ growth of carbon nanotubes/carbon nanofibers on cement/mineral admixture particles: A review", Constr. Build. Mater., 49, 835-840. https://doi.org/10.1016/j.conbuildmat.2013.09.011
  70. Tam, L.H. and Lau, D. (2015), "Moisture effect on the mechanical and interfacial properties of epoxybonded material system: An atomistic and experimental investigation", Polym., 57, 132-142. https://doi.org/10.1016/j.polymer.2014.12.026
  71. Tam, L.H. and Lau, D. (2016), "Effect of structural voids on mesoscale mechanics of epoxy-based materials", Multisc. Multiphys. Mech., 1(2), 127-141. https://doi.org/10.12989/mmm.2016.1.2.127
  72. Tam, L.H., Zhou, A., Yu, Z., Qiu, Q. and Lau, D. (2016), "Understanding the effect of temperature on the interfacial behavior of CFRP-wood composite via molecular dynamics simulations", Compos. Part B: Eng., 109, 227-237.
  73. Wang, J.F. and Liew, K.M. (2015), "On the study of elastic properties of CNT-reinforced composites based on element-free MLS method with nanoscale cylindrical representative volume element", Compos. Struct., 124, 1-9. https://doi.org/10.1016/j.compstruct.2015.01.006
  74. Wang, J.F., Zhang, L.W. and Liew, K.M. (2017), "Multiscale simulation of mechanical properties and microstructure of CNT-reinforced cement-based composites", Comput. Meth. Appl. Mech. Eng., 319, 393-413. https://doi.org/10.1016/j.cma.2017.02.026
  75. Wei, C., Cho, K. and Srivastava, D. (2003), "Tensile strength of carbon nanotubes under realistic temperature and strain rate", Phys. Rev. B, 67(11), 115407. https://doi.org/10.1103/PhysRevB.67.115407
  76. Xie, X.L., Mai, Y.W. and Zhou, X.P. (2005), "Dispersion and alignment of carbon nanotubes in polymer matrix: A review", Mater. Sci. Eng.: R: Rep., 49(4), 89-112. https://doi.org/10.1016/j.mser.2005.04.002
  77. Yu, J., Grossiord, N., Koning, C.E. and Loos, J. (2007), "Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution", Carbon, 45(3), 618-623. https://doi.org/10.1016/j.carbon.2006.10.010
  78. Yu, K., Yu, J., Lu, Z. and Chen, Q. (2016), "Fracture properties of high-strength/high-performance concrete (HSC/HPC) exposed to high temperature", Mater. Struct., 49(11), 4517-4532. https://doi.org/10.1617/s11527-016-0804-x
  79. Yu, Z. and Lau, D. (2015a), "Development of a coarse-grained ${\alpha}$-chitin model on the basis of MARTINI forcefield", J. Molecul. Model., 21(5), 1-9.
  80. Yu, Z. and Lau, D. (2015b), "Molecular dynamics study on stiffness and ductility in chitin-protein composite", J. Mater. Sci., 50(21), 7149-7157. https://doi.org/10.1007/s10853-015-9271-y
  81. Yu, Z. and Lau, D. (2015c), "Nano- and mesoscale modeling of cement matrix", Nanosc. Res. Lett., 10(1), 173. https://doi.org/10.1186/s11671-015-0862-y
  82. Yu, Z., Xu, Z. and Lau, D. (2014), "Effect of acidity on chitin-protein interface: A molecular dynamics study", BioNanoSci., 4(3), 207-215. https://doi.org/10.1007/s12668-014-0138-5
  83. Yu, Z., Zhou, A. and Lau, D. (2016), "Mesoscopic packing of disk-like building blocks in calcium silicate hydrate", Sci. Rep., 6, 36967. https://doi.org/10.1038/srep36967
  84. Yurekli, K., Mitchell, C.A. and Krishnamoorti, R. (2004), "Small-angle neutron scattering from surfactantassisted aqueous dispersions of carbon nanotubes", J. Am. Chem. Soc., 126(32), 9902-9903. https://doi.org/10.1021/ja047451u
  85. Metaxa, M.S.K.G. and Shah, S.P. (2010), "Mechanical properties and nanostructure of cement-based materials reinforced with carbon nanofibers and polyvinyl alcohol (PVA) microfibers", Spec. Publ., 270.
  86. Zhang, L.W., Kai, M.F. and Liew, K.M. (2017), "Evaluation of microstructure and mechanical performance of CNT-reinforced cementitious composites at elevated temperatures", Compos. Part A: Appl. Sci. Manufact., 95, 286-293. https://doi.org/10.1016/j.compositesa.2017.02.001