DOI QR코드

DOI QR Code

Stochastic thermo-mechanically induced post buckling response of elastically supported nanotube-reinforced composite beam

  • Chaudhari, Virendra Kumar (D C National polytechnic, Siddhartha Nagar) ;
  • Shegokar, Niranjan L. (D Y Patil Institute of Engineering & Technology) ;
  • Lal, Achchhe (S.V. National Institute of Technology)
  • Received : 2016.10.27
  • Accepted : 2017.06.12
  • Published : 2017.09.25

Abstract

This article covenants with the post buckling witticism of carbon nanotube reinforced composite (CNTRC) beam supported with an elastic foundation in thermal atmospheres with arbitrary assumed random system properties. The arbitrary assumed random system properties are be modeled as uncorrelated Gaussian random input variables. Unvaryingly distributed (UD) and functionally graded (FG) distributions of the carbon nanotube are deliberated. The material belongings of CNTRC beam are presumed to be graded in the beam depth way and appraised through a micromechanical exemplary. The basic equations of a CNTRC beam are imitative constructed on a higher order shear deformation beam (HSDT) theory with von-Karman type nonlinearity. The beam is supported by two parameters Pasternak elastic foundation with Winkler cubic nonlinearity. The thermal dominance is involved in the material properties of CNTRC beam is foreseen to be temperature dependent (TD). The first and second order perturbation method (SOPT) and Monte Carlo sampling (MCS) by way of CO nonlinear finite element method (FEM) through direct iterative way are offered to observe the mean, coefficient of variation (COV) and probability distribution function (PDF) of critical post buckling load. Archetypal outcomes are presented for the volume fraction of CNTRC, slenderness ratios, boundary conditions, underpinning parameters, amplitude ratios, temperature reliant and sovereign random material properties with arbitrary system properties. The present defined tactic is corroborated with the results available in the literature and by employing MCS.

Keywords

References

  1. Lal, A., Jagtap, K.R. and Singh, B.N. (2013), "Post buckling response of functionally graded material plates subjected to mechanical and thermal loading with random material properties", Appl. Math. Model., 37(5), 2900-2920. https://doi.org/10.1016/j.apm.2012.06.013
  2. Lal, A., Singh, N.H. and Shegokar, N.L. (2012), "FEM model for stochastic mechanical and thermal post buckling response of functionally graded material plates applied to panels with circular and square holes having material randomness", J. Mech. Sci., 62(1), 18-33. https://doi.org/10.1016/j.ijmecsci.2012.05.010
  3. Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
  4. Singh, B.N. and Grover, N. (2013), "Stochastic methods for the analysis of uncertain composites", J. Ind. Inst. Sci., 93(4), 603-620.
  5. Salvetat, D. and Rubio, A. (2002), "Mechanical properties of carbon nanotubes: A fiber digests for beginners", Carbon., 40(10), 1729-1734. https://doi.org/10.1016/S0008-6223(02)00012-X
  6. Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X
  7. Vanmarcke, E. and Grigoriu, M. (1983), "Stochastic finite element analysis of simple beams", ASCE J. Eng. Mech., 109(5), 1203-1214. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:5(1203)
  8. Elishakoffl, Y.J., Ren, M. and Shinozuka. (1996), "Variational principles developed for and applied to analysis of stochastic beams", ASCE J. Eng. Mech., 122(6), 559-565. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:6(559)
  9. Stefanou, G. (2009), "The stochastic finite element method: past, present and future", Comput. Meth. Appl. Mech. Eng., 15, 1031-1051.
  10. Seidel, G.D. and Lagoudas, D.C. (2006), "Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites", Mech. Mater., 38(8), 884-907. https://doi.org/10.1016/j.mechmat.2005.06.029
  11. Shen, H.S. (1995), "Post buckling analysis of moderately thick rectangular plates on two parameter elastic foundations", Eng. Struct., 17(7), 523-529. https://doi.org/10.1016/0141-0296(95)00102-D
  12. Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and post buckling behavior of functionally graded carbon nanotube-reinforced composite plates", Mater. Des., 31, 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
  13. Wan, H., Delale, F. and Shen, L. (2005), "Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites", Mech. Res. Commun., 32(5), 481-489. https://doi.org/10.1016/j.mechrescom.2004.10.011
  14. Shen, H.S. and Xiang, Y. (2013), "Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments", Eng. Struct., 56, 698-708. https://doi.org/10.1016/j.engstruct.2013.06.002
  15. Wuite, J. and Adali, S. (2005), "Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis", Compos. Struct., 71(3), 388-396. https://doi.org/10.1016/j.compstruct.2005.09.011
  16. Yang, J., Liew, K.M. and Kitipornchai, S. (2005), "Stochastic analysis of compositionally graded plates with system randomness under static loading", J. Mech. Sci., 47(10), 1519-1541. https://doi.org/10.1016/j.ijmecsci.2005.06.006
  17. Locke, J.E. (1993), "Finite element large deflection random response of thermally buckled plates", J. Sound Vibr., 160, 301-312. https://doi.org/10.1006/jsvi.1993.1025
  18. Rafiee, M., Yang, J. and Kitipornchai, S. (2013), "Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams", Comput. Math. Appl., 66(7), 1147-1160. https://doi.org/10.1016/j.camwa.2013.04.031
  19. Yas, M.H. and Samadi, S. (2012), "Free vibrations and buckling analysis of carbon nanotube reinforced composite Timoshenko beams on elastic foundation", J. Pres. Ves. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
  20. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Compos. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028
  21. Dash, P. and Singh, B.N. (2012), "Buckling and post-buckling of laminated composite plates mechanics", Res. Commun., 46, 1-7.
  22. Bonnet, P., Sireude, D., Garnier, B. and Chauvet, O. (2007), "Thermal properties and percolation in carbon nanotube-polymer composites", J. Appl. Phys., 91, 2019-2010.
  23. Malekzadeh, P. and Shojaee, M. (2013), "Buckling analysis of quadrilateral laminated plates with carbon nanotubes reinforced composite layers", Thin-Wall. Struct., 71, 108-118. https://doi.org/10.1016/j.tws.2013.05.008
  24. Shapery, R.A. (1968), "Thermal expansion coefficients of composite materials based on energy principles", J. Compos. Mater., 2(3), 380-404. https://doi.org/10.1177/002199836800200308
  25. Reza, H., Hamid, R., Mirdamadi, H. and Khademyzadeh. (2012), "Buckling analysis of short carbon nanotubes based on a novel Timoshenko beam model", J. Theoret. Appl. Mech., 50(4) 975-986.
  26. Meguid, S.A. and Sun, Y. (2004), "On the tensile and shear strength of nano-reinforced composite interfaces", Mater. Des., 25(4), 289-296. https://doi.org/10.1016/j.matdes.2003.10.018
  27. Pradhan, S.C. and Reddy, G.K. (2011), "Thermo mechanical buckling analysis of carbon nanotubes on winkler foundation using non-local elasticity theory and DTM", Ind. Acad. Sci. Sadhana, 36(6), 1009-1019.
  28. Hisada, T. and Nakagiri, S. (1980), "A note on stochastic finite element method (part I)-variation of stress and strain caused by shape fluctuation", J. Inst. Ind. Sci., 32(5), 39-42.
  29. Vodenitcharova, T. and Zhang, L.C. (2006), "Bending and local buckling of a nanocomposite beam reinforced by a single-walled carbon nanotube", J. Sol. Struct., 43(10), 3006-3024. https://doi.org/10.1016/j.ijsolstr.2005.05.014
  30. Chang, T.P. and Chang, H.C. (1994), "Stochastic dynamic finite element analysis of a non-uniform beam", J. Sol. Struct., 31(5), 587-597. https://doi.org/10.1016/0020-7683(94)90139-2
  31. Chang, T.P. and Chang, H.C. (1994), "Stochastic dynamic finite element analysis of a non-uniform beam", J. Sol. Struct., 31(5), 587-597. https://doi.org/10.1016/0020-7683(94)90139-2
  32. Chang, T.P. and Chang, H.C. (1994), "Stochastic dynamic finite element analysis of a non-uniform beam", J. Sol. Struct., 31(5), 587-597. https://doi.org/10.1016/0020-7683(94)90139-2
  33. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
  34. Song, Y.S. and Youn, J.R. (2006), "Modeling of effective elastic properties for polymer based carbon nanotube composites", Polym., 47(5), 1741-1748. https://doi.org/10.1016/j.polymer.2006.01.013