References
- Babajee, J. (2013), "Detailed numerical characterization of the separation-induced transition, including bursting, in a low-pressure turbine environment", Ph.D. Dissertation, Ecole Centrale de Lyon, Institut Von Karman de Dynamique des Fluides, Rhode-Saint-Genese, Belgium.
- Bassi, F., Botti, L., Colombo, A., Crivellini, A., Franchina, N., Ghidoni, A. and Rebay, S. (2010), Very High-Order Accurate Discontinuous Galerkin Computation of Transonic Turbulent Flows on Aeronautical Configurations, ADIGMA-A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications, 25-38.
- Bassi, F., Botti, L., Colombo, A., Di Pietro, D.A. and Tesini, P. (2012), "On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations", J. Comput. Phys., 231(1), 45-65. https://doi.org/10.1016/j.jcp.2011.08.018
-
Bassi, F., Crivellini, A., Rebay, S. and Savini, M. (2005), "Discontinuous Galerkin solution of the reynoldsaveraged navier-stokes and k-
${\omega}$ turbulence model equations", Comput. Flu., 34(4), 507-540. https://doi.org/10.1016/j.compfluid.2003.08.004 - Bode, C., Aufderheide, T., Friedrichs, J. and Kozulovic, D. (2014), "Correlation based inlet boundary conditions for improved turbulence and transition prediction in turbomachinery flows", Proceedings of the 6th European Conference on Computational Fluid Dynamics, Barcelona, Spain, July.
- Choudhry, A., Arjomandi, M. and Kelso, R. (2015), "A study of long separation bubble on thick airfoils and its consequent effects", J. Heat Flu. Fl., 52, 84-96. https://doi.org/10.1016/j.ijheatfluidflow.2014.12.001
- De Wiart, C.C. and Hillewaert, K. (2015), "A discontinuous Galerkin method for implicit LES of moderate Reynolds number flows", Proceedings of the AIAA Aerospace Sciences Meeting, AIAA Science and Technology Forum, Kissimmee, Florida, U.S.A., January.
- De Wiart, C.C., Hillewaert, K. and Geuzaine, P. (2012), "DNS of a low pressure turbine blade computed with the discontinuous Galerkin method", Proceedings of the ASME Turbo Expo 2012 Turbine Technical Conference and Exposition, Copenhagen, Denmark, June.
- Deters, R.W., Ananda, G.K. and Selig, M.S. (2014), "Reynolds number effects on the performance of smallscale propellers", Proceedings of the 32nd AIAA Applied Aerodynamics Conference, Atlanta, U.S.A., June.
- Ferrero, A., Larocca, F. and Puppo, G. (2015), "A robust and adaptive recovery-based discontinuous Galerkin method for the numerical solution of convection-diffusion equations", J. Numer. Meth. Fl., 77(2), 63-91. https://doi.org/10.1002/fld.3972
- Geuzaine, C. and Remacle, J.F. (2009), "Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities", J. Numer. Meth. Eng., 79(11), 1309-1331. https://doi.org/10.1002/nme.2579
- Hansen, K.L. (2012), "Effect of leading edge tubercles on airfoil performance", Ph.D. Dissertation, The University of Adelaide, Adelaide, Australia.
- Hansen, K.L., Kelso, R.M. and Dally, B.B. (2011), "Performance variations of leading-edge tubercles for distinct airfoil profiles", AIAA J., 49(1), 185-194. https://doi.org/10.2514/1.J050631
- Hourmouziadis, J. (1989), Aerodynamic Design of Low Pressure Turbines, AGARD, Blading Design for Axial Turbomachines, 40.
- Kozulovic, D. and Lapworth, B.L. (2007), "An approach for inclusion of a non-local transition model in a parallel unstructured CFD code", Proceedings of the 5th SME/JSME Joint Fluids Engineering Conference, San Diego, California, U.S.A., July.
- Langtry, R.B. and Menter, F.R. (2009), "Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes", AIAA J., 47(12), 2894-2906. https://doi.org/10.2514/1.42362
- Lardeau, S., Leschziner, M.A. and Li, N. (2004), "Modelling bypass transition with low-reynolds-number nonlinear eddy-viscosity closure", Flow Turbul. Combust., 73(1), 49-76. https://doi.org/10.1023/B:APPL.0000044367.24861.b7
- Leicht, T. and Hartmann, R. (2010), "Error estimation and anisotropic mesh refinement for 3d laminar aerodynamic flow simulations", J. Comput. Phys., 229(19), 7344-7360. https://doi.org/10.1016/j.jcp.2010.06.019
- Lukarski, D. and Trost, N. (2014), Paralution Project, http://www.paralution.com.
- Marciniak, V. (2015), "Modeling flows in low-pressure turbine cascades at very low reynolds numbers", CEAS Aeronaut. J., 6(2), 257-270. https://doi.org/10.1007/s13272-014-0143-y
- Marciniak, V., Weber, A. and Kugeler, E. (2014), "Modelling transition for the design of modern axial turbomachines", Proceedings of the 11th World Congress on Computational Mechanics, Barcelona, Spain, July.
- Mayle, R.E. and Schulz, A. (1997), "The path to predicting bypass transition", J. Turbomach., 119(3), 405-411. https://doi.org/10.1115/1.2841138
- Michalek, J., Monaldi, M. and Arts, T. (2012), "Aerodynamic performance of a very high lift low pressure turbine airfoil (T106C) at low reynolds and high mach number with effect of free stream turbulence intensity", J. Turbomach., 134(6), 061009. https://doi.org/10.1115/1.4006291
- Michelassi, V., Wissink, J. and Rodi, W. (2002), "Analysis of DNS and LES of flow in a low pressure turbine cascade with incoming wakes and comparison with experiments", Fl. Turbul. Combust., 69(3-4), 295-329. https://doi.org/10.1023/A:1027334303200
- Osher, S. and Solomon, F. (1982), "Upwind difference schemes for hyperbolic systems of conservation laws", Math. Comput., 38(158), 339-374. https://doi.org/10.1090/S0025-5718-1982-0645656-0
- Pacciani, R., Marconcini, M., Fadai-Ghotbi, A., Lardeau, S. and Leschziner, M.A. (2011), "Calculation of high-lift cascades in low pressure turbine conditions using a three-equation model", J. Turbomach., 133(3), 031016. https://doi.org/10.1115/1.4001237
- Pandolfi, M. (1984), "A contribution to the numerical prediction of unsteady flows", AIAA J., 22(5), 602-610. https://doi.org/10.2514/3.48491
- Sjolander, R.L.S. and Langtry, R. (2002), "Prediction of transition for attached and separated shear layers in turbomachinery", Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Indianapolis, Indiana, U.S.A., July.
- Spalart, P.R. and Rumsey, C.L. (2007), "Effective inflow conditions for turbulence models in aerodynamic calculations", AIAA J., 45(10), 2544-2553. https://doi.org/10.2514/1.29373
- Tucker, P.G. (2013), "Trends in turbomachinery turbulence treatments", Prog. Aerosp. Sci., 63(1), 1-32.
- Walters, D.K. and Cokljat, D. (2008), "A three-equation eddy-viscosity model for reynolds-averaged navierstokes simulations of transitional flow", J. Flu. Eng., 130(12), 1-14.
- Walters, D.K. and Leylek, J.H. (2005), "Computational fluid dynamics study of wake-induced transition on a compressor-like flat plate", J. Turbomach., 127(1), 52-63. https://doi.org/10.1115/1.1791650
- Wilcox, D.C. (1998), Turbulence Modeling For CFD, DCW Industries, La Canada, California, U.S.A.
- Yershov, S., Derevyanko, A., Yakovlev, V. and Gryzun, M. (2016), "Influence of laminar-turbulent transition on 3D flow pattern in subsonic turbine cascade", Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, Utah, U.S.A., July.
Cited by
- Plasma Actuator-Assisted Rocket Nozzle for Improved Launcher Performance vol.57, pp.4, 2017, https://doi.org/10.2514/1.j057956
- Reduced order modelling for turbomachinery shape design vol.34, pp.2, 2017, https://doi.org/10.1080/10618562.2019.1691722