DOI QR코드

DOI QR Code

Nickel removal from low permeable kaolin soil under unenhanced and EDTA-enhanced electrokinetic process

  • Asadollahfardi, Gholamreza (Environmental Engineering, Department of Civil Engineering, Kharazmi University) ;
  • Nasrollahi, Mostafa (Geotechnical Engineering, Department of Civil Engineering, Kharazmi University) ;
  • Rezaee, Milad (Geotechnical Engineering, Department of Civil Engineering, Kharazmi University) ;
  • Darban, Ahmad Khodadadi (Environmental Engineering, Department of Mining, Tarbiat Modares University)
  • Received : 2017.04.08
  • Accepted : 2017.08.03
  • Published : 2017.06.25

Abstract

This paper represents a set of experimental tests on remediation of nickel-contaminated kaolin by Electrokinetic method. For this purpose, we conducted unenhanced and EDTA-enhanced Electrokinetic tests in one, three, and five days of treatment. In unenhanced tests, we used deionized water as an electrolyte in the anode and the cathode compartments. In the EDTA-enhance tests, we used ethylenediaaminetetra acetic acid 0.1 Molar in the cathode and sodium hydroxide 0.1 Molar in the anode. The average nickel removal for unenhanced tests after three and five days of treatment was 19 and 23 percent, respectively. High buffer capacity of the soil is responsible for low removal efficiency in the unenhanced tests, which maintained pH close to the initial amount that restrained nickel as an adsorbed or precipitated forms. The average nickel removal for EDTA-unenhanced tests after three and five days of treatment was 22 and 12 percent, respectively. Lower ionic mobility of EDTA-Ni complex in comparison with $Ni^{+2}$, which is the main transportation mechanism for this complex, could be responsible for less removal efficiency in EDTA-enhanced test.

Keywords

References

  1. Acar, Y.B. and Alshawabkeh, A.N. (1996), "Electrokinetic remediation. I: Pilot-scale tests with lead-spiked kaolinite", J. Geotech. Eng., 122(3), 173-185. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(173)
  2. Acar, Y.B., Rabbi, M.F. and Ozsu, E.E. (1997), "Electrokinetic injection of ammonium and sulfate ions into sand and kaolinite beds", J. Geotech. Geoenviron. Eng., 123(3), 239-249. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:3(239)
  3. Altin, A., Altin, S., Atmaca, E. and Degirmenci, M. (2004), "Lead (II) removal from natural sandy soils by enhanced electrokinetic remediation", Bullet. Environ. Contamin. Toxicol., 73(3), 551-560. https://doi.org/10.1007/s00128-004-0464-3
  4. Amrate, S. and Akretche, D.E. (2005), "Modeling EDTA enhanced electrokinetic remediation of lead contaminated soils", Chemosph., 60(10), 1376-1383. https://doi.org/10.1016/j.chemosphere.2005.02.021
  5. Asadollahfardi, G., Nasrollahi, M. and Rezaee, M. (2015), "Electrochemical remediation technology : Fundamentals, benefits and challenges", Proceedings of the 3rd International Symposium on Environmental and Water Resources Engineering, Tehran, Iran, June.
  6. Asadollahfardi, G., Rezaee, M. and Tavakoli, M.G. (2016), "Simulation of unenhanced electrokinetic process for lead removal from kaolinite clay", J. Civil Eng., 14(4), 263-270
  7. Budhu, M., Rutherford, M., Siils, G. and Rasmussen, W. (1997), "Transport of nitrates through clay using eelectrokinetic", J. Environ. Eng., 123(12), 1251-1253. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:12(1251)
  8. Cameselle, C. and Reddy, K.R. (2013), "Effects of periodic electric potential and electrolyte recirculation on electrochemical remediation of contaminant mixtures in clayey soils", Wat. Air Soil Pollut., 224(8), 1636. https://doi.org/10.1007/s11270-013-1636-8
  9. Estabragh, A.R., Bordbar, A.T., Ghaziani, F. and Javadi, A.A. (2016), "Removal of MTBE from a clay soil using electrokinetic technique", Environ. Technol., 37(14), 1745-1756. https://doi.org/10.1080/09593330.2015.1131750
  10. Gholami, M., Yousefi, K.D. and Mahmudi, M. (2014), "Electrokinetic remediation of perchloroethylenecontaminated soil", J. Environ. Sci. Technol.,11(5), 1433-1438. https://doi.org/10.1007/s13762-014-0555-6
  11. Giannis, A., Pentari, D., Wang, J.Y. and Gidarakos, E. (2010) "Application of sequential extraction analysis to electrokinetic remediation of cadmium, nickel and zinc from contaminated soils", J. Hazard. Mater., 184(1-3), 547-554. https://doi.org/10.1016/j.jhazmat.2010.08.070
  12. Gu, Y.Y., Yeung, A.T. and Li, H.J. (2009), EDTA-Enhanced Electrokinetic Extraction of Cadmium From a Natural Clay of High Buffer Capacity, Advances in Environmental Geotechnics, Springer.
  13. Hakansson, T., Suer, P., Mattiasson, B. and Allard, B. (2008), "Sulphate reducing bacteria to precipitate mercury after electrokinetic soil remediation", J. Environ. Sci. Technol., 5(2), 267-274. https://doi.org/10.1007/BF03326021
  14. Huang, Q., Yu, Z., Pang, Y., Wang, Y. and Cai, Z. (2015), "Coupling bioleaching and electrokinetics to remediate heavy metal contaminated soils", Bullet. Environ. Contamin. Toxicol., 94(4), 519-524. https://doi.org/10.1007/s00128-015-1500-1
  15. Khodadadi, A., Yousefi, D., Ganjidoust, H. and Yari, M. (2011), "Bioremediation of diesel-contaminated soil using bacillus sp. (strain TMY-2) in soil by uniform and non-uniform electro kinetic technology field", J. Tox. Environ. Health Sci., 3(15), 376-384.
  16. Kim, S.S. and Han, S.J. (2003), "Application of an enhanced eelectrokinetic ion injection system to bioremediation", Wat. Air Soil Pollut., 146(1), 365-377. https://doi.org/10.1023/A:1023934518049
  17. Rabbi, M.F., Clark, B., Gale, R.J., Ozsu-Acar, E., Pardue, J. and Jackson, A. (2000), "In situ TCE bioremediation study using electrokinetic cometabolite injection", Waste Manage., 20(4), 279-286. https://doi.org/10.1016/S0956-053X(99)00329-3
  18. Rajic, L., Dalmacija, B., Perović, U., Pesic, V., Dalmacija, M., Klasnja, M., Tomin, M.B. and Watson, M. (2013), "Improving the electrokinetic remediation of nickel-, cadmium-, and lead-contaminated sediment", Soil Sedim. Contamin. J., 22(2), 199-207. https://doi.org/10.1080/15320383.2013.722135
  19. Reddy, K.R. and Parupudi, U.S. (1997), "Removal of chromium, nickel and cadmium from clays by in-situ electrokinetic remediation", Soil Sedim. Contamin., 6(4), 391-407. https://doi.org/10.1080/15320389709383574
  20. Reddy, K.R., Chaparro, C. and Saichek, R.E. (2003), "Iodide-enhanced electrokinetic remediation of mercury-contaminated soils", J. Environ. Eng., 129(12), 1137-1148. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:12(1137)
  21. Reddy, K.R. and Chinthamreddy, S. (1999), "Electrokinetic remediation of heavy metal-contaminated soils under reducing environments", Waste Manage., 19(4), 269-282. https://doi.org/10.1016/S0956-053X(99)00085-9
  22. Reddy, K.R., Chinthamreddy, S. and Al-Hamdan, A. (2001), "Synergistic effects of multiple metal contaminants on electrokinetic remediation of soils", Remediat., 11(3), 85-109. https://doi.org/10.1002/rem.1006
  23. Reddy, K.R., Chinthamreddy, S., Saichek, R.E. and Cutright, T.J. (2003), "Nutrient amendment for the bioremediation of a chromium-contaminated soil by electrokinetics", Energy Sourc., 25(9), 931-943. https://doi.org/10.1080/00908310390221318
  24. Reddy, K.R., Xu, C.Y. and Chinthamreddy, S. (2001), "Assessment of electrokinetic removal of heavy metals from soils by sequential extraction analysis", J. Hazard. Mater., 84(2-3), 279-296. https://doi.org/10.1016/S0304-3894(01)00237-0
  25. Reddy, K.R. and Chinthamreddy, S. (2004), "Enhanced electrokinetic remediation of heavy metals in glacial till soils using different electrolyte solutions", J. Environ. Eng., 130(14), 442-455. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:4(442)
  26. Reddy, K.R., Danda, S. and Saichek, R.E. (2004), "Complicating factors of using ethylenediamine tetraacetic acid to enhance electrokinetic remediation of multiple heavy metals in clayey soils", J. Environ. Eng., 130(11), 1357-1366. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:11(1357)
  27. Reddy, K.R. and Chindamreddy, S. (2000), "Comparison of extractants for removing heavy metals from contaminated clayey soils", Soil Sedim. Contamin. J., 9(5), 449-462. https://doi.org/10.1080/10588330091134347
  28. Rezaee, M., Asadollahfardi, G. and Nasrollahi, M. (2015), "Mathematical modeling of electrochemical soil decontamination", Proceedings of the 10th International Congress on Civil Engineering, Tabriz, Iran, May.
  29. Saeedi, M., Jamshidi, A., Shariatmadri, N. and Falamaki, A. (2009), "An investigation on the efficiency of electro kinetic coupled with carbon active barrier to remediate nickel contaminated clay", J. Environ. Res., 3(4), 629-636.
  30. Saleem, M., Chakrabarti, M.H., Irfan, M.F., Hajimolana, S.A., Hussain, M.A., Diyauddeen, B.H. and Daud, W.M.A.W. (2011), "Electrokinetic remediation of nickel from low permeability soil", J. Electrochem. Sci., 6(9), 4264-4275.
  31. Thevanayagam, S. and Rishindran, T. (1998), "Injection of nutrients and TEAs in clayey soils using electrokinetics", J. Geotech. Geoenviron. Eng., 124(4), 330-338. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:4(330)
  32. Wong, J.S.H., Hicks, R.E. and Probstein, R.F. (1997), "EDTA-enhanced electroremediation metalcontaminated soils", J. Hazard. Mater., 55(1-3), 61-79. https://doi.org/10.1016/S0304-3894(97)00008-3
  33. Yeung, A.T. (2006), "Contaminant extractability by electrokinetics", Environ. Eng. Sci., 23(1), 202-224. https://doi.org/10.1089/ees.2006.23.202
  34. Yeung, A.T., Hsu, C. and Menon, R.M. (1996), "EDTA-enhanced electrokinetic extraction of lead", J. Geotech. Eng., 122(8), 666-673. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:8(666)