References
- 강옥기, 권은근, 이형주, 우희정, 윤상혁, 김태희, 김수철, 유승연, 윤혜미 (2013). 중학교 수학 2, 서울: 두산동아.(Kang, O., Kwon, E., Lee, H., Woo, H., Yoon, S., Kim, T., Kim, S., Yoo, S., & Yoon, H. (2013). Middle school mathematics 2, Seoul: Doosan Donga.)
- 고상숙, 주홍연, 한혜숙 (2014). 그래핑 계산기를 활용한 수학적 과정의 평가도구 개발에 관한 연구 -중학교 수학을 중심으로-, 수학교육 53(2), 163-184.(Koh, S., Joo, H., & Han, H. (2014). A study on the development of assessment tools using graphing calculators for the assessment of mathematical process -Focused on middle school mathematics-, The Mathematical Education 53(2), 163-184.)
- 교육과학기술부 (2011). 수학과 교육과정(교육과학기술부 고시 제2011-361호[별책 8]).(Ministers of Education Science and Technology (2011). Mathematics curriculum: MEST announcement 2011-361 [Separate Volume 8], Seoul: MEST.)
- 김부윤, 이지성 (2008). Instrument로서의 테크놀로지와 수학 학습 패러다임의 변화, 수학교육 47(3), 261-271.(Kim, B. & Lee, J. (2008). Technology as Instruments and the Change of Paradigm in Mathematics Learning, The Mathematical Education 47(3), 261-271.)
- 류희찬, 류성림, 이경화, 신보미, 강순모, 윤옥교, 김명수, 조성오, 천태선, 김철호 (2013). 중학교 수학 2, 서울: 천재교육.(Ryu, H., Ryu, S., Lee, K., Shin, B., Kang, S., Yoon, O., Kim, M., Cho, S., Chun, T., & Kim, C. (2013). Middle School Mathematics 2, Seoul: Chunjae.)
- 신보미, 이경화 (2006). 컴퓨터 시뮬레이션을 통한 통계적 확률 지도에 대한 연구, 수학교육학연구 16(2), 139-156.(Shin, B. & Lee, K. (2006). A Study on the Statiscal Probability Instruction through Computer Simulation, The Journal of Education Research in Mathematics 16(2), 139-156.)
- 신원섭, 신동훈 (2016). 실제 과학수업에서 시선추적과 주의력 검사를 통한 초등학생들의 주의 특성 분석, 한국과학교육학회지 36(4), 705-715.(Shin, W. & Shin, D. (2016). An analysis of elementary students' attention characteristics through attention test and the eye tracking on real science classes, Journal of the Korean Association for Science Education 36(4), 705-715.) https://doi.org/10.14697/JKASE.2016.36.4.0705
- 신항균, 황혜정, 이광연, 김화영, 조준모, 최화정, 윤기원 (2013). 중학교 수학 2, 서울: 지학사.(Shin, H., Hwang, H., Lee, K., Kim, H., Cho, J., Choi, H., & Yoon, K. (2013). Middle school mathematics 2, Seoul: Jihaksa.)
- 우정호, 이경화 (1996). 확률 개념의 교수학적 변환에 관한 연구, 수학교육학연구 6(1), 125-144.(Woo, J. & Lee, K. (1996). A study on the didactic transposition of the concept of probability, The Journal of Education Research in Mathematics 6(1), 125-144.)
- 우정호, 박교식, 이종희, 박경미, 김남희, 임재훈, 남진영, 권석일, 김진환, 강현영, 조차미, 최은자, 김준식, 허선희, 전지영, 고현주, 이정연 (2013). 중학교 수학 2, 서울: 두산동아.(Woo, J., Park, K., Lee, J., Park, K., Kim, N., Lim, J., Nam, J., Kwon, S., Kim, J., Kang, H., Cho, C., Choi, E., Kim, J., Heo, S., Chun, J., Ko, H., & Lee, J. (2013). Middle school mathematics 2, Seoul: Doosan Donga.)
- 이미진, 이광호 (2015). 시선 추적기를 통해 본, 4학년 학생들의 방정식에 대한 관계적 사고 형성, 학교수학 17(3), 391-405.(Lee, M. & Lee, K. (2015). Elementary students' formation of relational thinking about equation - Centered for web-based balance. school mathematics, 17(3), 391-405.)
- 이윤경, 조정수 (2015). '큰 수의 법칙' 탐구 활동에서 나타난 가추법의 유형 분석, 수학교육학연구 25(3), 323-345.(Lee, Y. & Cho, C. (2015). An analysis on abduction type in the activities exploring 'Law of large numbers', The Journal of Education Research in Mathematics 25(3), 323-345.)
- 이지윤 (2015). 3D 입체 변별 과제에서 공간 인지 전략의 유형과 역할 : 체화된 3D 거북 표현식과 전략을 중심으로. 박사학위논문, 서울대학교.(Lee, J. (2015). Type and role of spatial cognition strategies in 3D object discrimination tasks. Doctoral dissertation, Seoul National University.)
- 조한혁 (2003). 컴퓨터와 수학교육, 수학교육 42(2), 177-191.(Cho, H. (2003). Computers and mathematics education, The Mathematical Educatio 42(2), 177-191.)
- 최인용, 조한혁 (2016). 순열 조합 이해 과제에서의 안구 운동 추적 연구, 수학교육학연구 26(4), 635-662.(Choi, I. & Cho, H. (2016). Eye movements in understanding combinatorial problems, The Journal of Education Research in Mathematics 26(4), 635-662.)
- Abrahamson, D. (2009). Embodied design: Constructing means for constructing meaning, Educational Studies in Mathematics 70(1), 27-47. https://doi.org/10.1007/s10649-008-9137-1
- Andra, C., Lindstrom, P., Arzarello, F., Holmqvist, K., Robutti, O., & Sabena, C. (2015). Reading mathematics representations: An eye-tracking study, International Journal of Science and Mathematics Education 13(2), 237-259. https://doi.org/10.1007/s10763-013-9484-y
- Aspinwall, L. & Tarr, J. E. (2001). Middle school students' understanding of the role sample size plays in experimental probability, The Journal of Mathematical Behavior 20(2), 229-245. https://doi.org/10.1016/S0732-3123(01)00066-9
- Baars, B. J. & Gage, N. M. (2010). Cognition, brain, and consciousness: Introduction to cognitive neuroscience, Burlington, USA: Academic Press.
- Batanero, C. & Sanchez, E. (2005). What is the nature of high school students' conceptions and misconceptions about probability? In exploring probability in school (241-266). New York, USA: Springer.
- Biehler, R. (1991). Computers in probability education. In chance encounters: Probability in education (pp. 169-211). Netherlands: Springer.
- Campbell, S. R. (2010). Embodied minds and dancing brains: New opportunities for research in mathematics education. In Theories of mathematics education (309-331). Berlin: Springer.
- Chance, B., Ben-Zvi, D., Garfield, J., & Medina, E. (2007). The role of technology in improving student learning of statistics, Technology Innovations in Statistics Education 1(1), 16-41.
- Chaput, B., Girard, J. C., & Henry, M. (2011). Modeling and simulations in statistics and probability, In Teaching Statistics in School Mathematics-Challenges for Teaching and Teacher Education. (85-85). A Joint ICMI/IASE Study.
- Eichler, A. & Vogel, M. (2014). Three approaches for modelling situations with randomness, In Probabilistic thinking (75-99). Netherlands: Springer.
- English, L. D. & Watson, J. M. (2016). Development of probabilistic understanding in fourth grade, Journal for Research in Mathematics Education 47(1), 28-62. https://doi.org/10.5951/jresematheduc.47.1.0028
- Epelboim, J. & Suppes, P. (2001). A model of eye movements and visual working memory during problem solving in geometry, Vision Research 41(12), 1561-1574. https://doi.org/10.1016/S0042-6989(00)00256-X
- Fischbein, E. & Schnarch, D. (1997). The evolution with age of probabilistic, intuitively based misconceptions, Journal for research in mathematics education, 96-105.
- Freudenthal, H. (1972). The 'empirical law of large numbers' or 'The stability of frequencies', Educational studies in mathematics 4(4), 484-490. https://doi.org/10.1007/BF00567002
- Gazzaley, A. & Nobre, A. C. (2012). Top-down modulation: Bridging selective attention and working memory, Trends in cognitive sciences 16(2), 129-135. https://doi.org/10.1016/j.tics.2011.11.014
- Henderson, J. M., Brockmole, J. R., Castelhano, M. S., & Mack, M. (2007). Visual saliency does not account for eye movements during visual search in real-world scenes. Eye movements: A window on mind and brain (537-562). Netherlands: Elsevier.
- Holmqvist, K., Nystrom, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures. Oxford, UK: Oxford University Press.
- Inzunsa, S. & Mexico, C. S. (2008). Probability calculus and connections between empirical and theoretical distributions through computer simulation, In Proceedings of the 11th International Congress on Mathematical Education. Monterrey Mexico.
- Ireland, S. & Watson, J. (2009). Building a connection between experimental and theoretical aspects of probability, International Electronic Journal of Mathematics Education 4(3), 339-370.
- Just, M. A. & Carpenter, P. A. (1980). A theory of reading: from eye fixations to comprehension, Psychological review 87(4), 329. https://doi.org/10.1037/0033-295X.87.4.329
- Konold, C. (1995). Confessions of a coin flipper and would-be instructor, The American Statistician, 49(2), 203-209.
- Konold, C. & Miller, C. D. (2005). Tinker plots dynamic data exploration. 1.0, Computer software] Emeryville, CA: Key Curriculum Press.
- Knoblich, G., Ohlsson, S., & Raney, G. E. (2001). An eye movement study of insight problem solving, Memory & Cognition 29(7), 1000-1009. https://doi.org/10.3758/BF03195762
- Lin, J. J. H. & Lin, S. S. (2014). Cognitive load for configuration comprehension in computer-supported geometry problem solving: An eye movement perspective, International Journal of Science and Mathematics Education 12, 605-627. https://doi.org/10.1007/s10763-013-9479-8
- Maxara, C. & Biehler, R. (2006). Students' probabilistic simulation and modeling competence after a computer-intensive elementary course in statistics and probability, In Proceeding of the Seventh International Conference on the Teaching of Statistics.
- Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas, New York, USA: Basic Books Inc.
- Parkhurst, D., Law, K., & Niebur, E. (2002). Modeling the role of salience in the allocation of overt visual attention, Vision research 42(1), 107-123. https://doi.org/10.1016/S0042-6989(01)00250-4
- Posner, M. I. (1980). Orienting of attention, Quarterly journal of experimental psychology 32(1), 3-25. https://doi.org/10.1080/00335558008248231
- Prodromou, T. (2012). Connecting experimental probability and theoretical probability, ZDM 44(7), 855-868. https://doi.org/10.1007/s11858-012-0469-z
- Radford, L. (2010). The eye as a theoretician: Seeing structures in generalizing activities, For the Learning of Mathematics 30(2), 2-7.
- Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research, Psychological bulletin 124(3), 372. https://doi.org/10.1037/0033-2909.124.3.372
- Shaughnessy, J. M., Canada, D., & Ciancetta, M. (2003). Middle school students' thinking about variability in repeated trials: A cross-task comparison, International Group for the Psychology of Mathematics Education 4, 159-166.
- Snowden, R., Thompson, P., & Troscianko, T. (2012). Basic vision: an introduction to visual perception. 오성주 역. 서울: 학지사.
- Stohl, H. & Tarr, J. E. (2002). Developing notions of inference using probability simulation tools, The Journal of Mathematical Behavior 21(3), 319-337. https://doi.org/10.1016/S0732-3123(02)00132-3
- Susac, A., Bubic, A., Kaponja, J., Planinic, M., & Palmovic, M. (2014). Eye movements reveal students' strategies in simple equation solving, International Journal of Science and Mathematics Education 12, 555-577. https://doi.org/10.1007/s10763-014-9514-4
- Tversky, A. & Kahneman, D. (1971). Belief in the law of small numbers. Psychological bulletin 76(2), 105. https://doi.org/10.1037/h0031322
- Wilensky, U. (1995). Paradox, programming, and learning probability: A case study in a connected mathematics framework, The Journal of Mathematical Behavior 14(2), 253-280. https://doi.org/10.1016/0732-3123(95)90010-1
- Wilensky, U. (1997). What is normal anyway? Therapy for epistemological anxiety, Educational Studies in Mathematics 33(2), 171-202. https://doi.org/10.1023/A:1002935313957
- Yarbus, A. L. (1967). Eye movements during perception of complex objects. In Eye movements and vision (171-211). New York, USA: Springer.