DOI QR코드

DOI QR Code

열전지용(MS2, M=Fe, Ni, Co)계 양극의 전기화학적 특성 연구

Effect of Cathode Materials (MS2, M=Fe, Ni, Co) on Electrochemical Properties of Thermal Batteries

  • 이정민 (국방과학연구소 4기술연구본부 4부) ;
  • 임채남 (국방과학연구소 4기술연구본부 4부) ;
  • 윤현기 (국방과학연구소 4기술연구본부 4부) ;
  • 정해원 (국방과학연구소 4기술연구본부 4부)
  • Lee, Jungmin (The 4th R&D Institute-4, Agency for Defense Development) ;
  • Im, Chae-Nam (The 4th R&D Institute-4, Agency for Defense Development) ;
  • Yoon, Hyun-Ki (The 4th R&D Institute-4, Agency for Defense Development) ;
  • Cheong, Hae-Won (The 4th R&D Institute-4, Agency for Defense Development)
  • 투고 : 2017.07.05
  • 심사 : 2017.07.31
  • 발행 : 2017.09.01

초록

Thermal batteries are used in military power sources that require robustness and long storage life for applications in missiles and torpedoes. $FeS_2$ powder is currently used as a cathode material because of its high specific energy density, environmental non-toxicity, and low cost. $MS_2$ (M = Fe, Ni, Co) cathodes have been explored as novel candidates for thermal batteries in many studies; however, the discharge characteristics (1, 2, 3 plateau) of single cells in thermal batteries with different cathodes have not been elucidated in detail. In this study, we independently analyzed the discharge voltage and calculated the total polarizations of single cells using $MS_2$ cathodes. Based on the results of this study, we propose $NiS_2$ as a potential cathode material for use in thermal batteries.

키워드

참고문헌

  1. H. Cheong, S. Kang, J. Kim, and S. Cho, J. Ceram. Process. Res., 13, 198 (2012).
  2. H. Cheong, S. Ha, and Y. Choi, J. Ceram. Process. Res., 13, 308 (2012).
  3. D. Linden, Handbook of Batteries, 2nd ed. (McGraw-Hill, New York, 1985).
  4. R. Guidotti and P. Masset, J. Power Sources, 161, 1443 (2006). [DOI: https://doi.org/10.1016/j.jpowsour.2006.06.013]
  5. P. Masset and R. Guidotti, J. Power Sources, 164, 397 (2007). [DOI: https://doi.org/10.1016/j.jpowsour.2006.10.080]
  6. R. Guidotti and P. Masset, J. Power Sources, 183, 388 (2008). [DOI: https://doi.org/10.1016/j.jpowsour.2008.04.090]
  7. P. Masset and R. Guidotti, J. Power Sources, 177, 595 (2008). [DOI: https://doi.org/10.1016/j.jpowsour.2007.11.017]
  8. M. Au, J. Power Sources, 115, 360 (2003). [DOI: https://doi.org/10.1016/S0378-7753(02)00627-4]
  9. Y. Shao-Horn, S. Osmialowski, and Q. C. Horn, J. Electrochem. Soc., 149 A1499 (2002). [DOI: https://doi.org/10.1149/1.1513558]
  10. J. M. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 399 (2014). [DOI: http://dx.doi.org/10.4313/JKEM.2014.27.6.399]
  11. P. J. Masset and R. A. Guidotti, J. Power Sources, 178, 456 (2008). [DOI: https://doi.org/10.1016/j.jpowsour.2007.11.073]
  12. G. Swift, C. Lamb, and J. Ferraro, U. S. Patent 8652674 B2, February, 2014.
  13. Y. Choi, S. Cho, and Y. Lee, J. Kor. Ind. Eng. Chem., 20, 3584 (2014). [DOI: https://doi.org/10.1016/j.jiec.2013.12.052]
  14. E. J. Cairns, High-Temperature Lithium Batteries (Wiley Interscience, New York, 1983).
  15. S. Fujiwara, M. Inaba, and A. Tasaka, J. Power Sources, 196, 4012 (2011). [DOI: https://doi.org/10.1016/j.jpowsour.2010.12.009]
  16. Y. Choi, H. R. Yu, and H. W. Cheong, J. Power Sources, 276, 102 (2015). [DOI: https://doi.org/10.1016/j.jpowsour.2014.11.103]