DOI QR코드

DOI QR Code

ON 2-GENERATING INDEX OF FINITE DIMENSIONAL LEFT-SYMMETRIC ALGEBRAS

  • Yang, Xiaomei (LPMC and School of Mathematical Sciences Nankai University) ;
  • Zhu, Fuhai (LPMC and School of Mathematical Sciences Nankai University)
  • Received : 2016.08.24
  • Accepted : 2016.12.26
  • Published : 2017.09.01

Abstract

In this paper, we introduce the notion of generating index ${\mathcal{I}}_1(A)$ (2-generating index ${\mathcal{I}}_2(A)$, resp.) of a left-symmetric algebra A, which is the maximum of the dimensions of the subalgebras generated by any element (any two elements, resp.). We give a classification of left-symmetric algebras with ${\mathcal{I}}_1(A)=1$ and ${\mathcal{I}}_2(A)=2$, 3 resp., and show that all such algebras can be constructed by linear and bilinear functions. Such algebras can be regarded as a generalization of those relating to the integrable (generalized) Burgers equation.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. C. M. Bai, Left-symmetric algebras from linear functions, J. Algebra 281 (2004), no. 2, 651-665. https://doi.org/10.1016/j.jalgebra.2004.06.036
  2. C. M. Bai, Bijective 1-cocycles and classification of 3-dimensional left-symmetric algabras, Comm. Algebra 37 (2009), no. 3, 1016-1057. https://doi.org/10.1080/00927870802279030
  3. C. M. Bai and D. J. Meng, The classification of left-symmetric algebra in dimension 2, Chinese Science Bulletin 23 (1996), 2207.
  4. R. P. Bai, W. Q. Han, and C. M. Bai, The generating index of an n-Lie algebra, J. Phys. A 44 (2011), no. 18, 185201, 14 pp.
  5. D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4 (2006), no. 3, 323-357. https://doi.org/10.2478/s11533-006-0014-9
  6. A. Cayley, On the theory of analytic forms called trees, Collected Mathematical Papers of Arthur Cayley, Cambridge Univ. Press Vol. 3 (1890), 242-246.
  7. P. Etingof, T. Schedler, and A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equations, Duke Math. J. 100 (1999), no. 2, 169-209. https://doi.org/10.1215/S0012-7094-99-10007-X
  8. P. Etingof and A. Soloviev, Quantization of geometric classical r-matrix, Math. Res. Lett. 6 (1999), no. 2, 223-228. https://doi.org/10.4310/MRL.1999.v6.n2.a10
  9. F. Fang and F. Zhu, Generating index of finite dimensional Lie algebras, Front. Math. China 6 (2011), no. 4, 659-670. https://doi.org/10.1007/s11464-011-0106-0
  10. M. A. Gauger, On the classification of Metabelian Lie algebras, Trans. Amer. Math. Soc. 179 (1973), 293-329. https://doi.org/10.1090/S0002-9947-1973-0325719-0
  11. M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267-288. https://doi.org/10.2307/1970343
  12. I. Z. Golubschik and V. V. Sokolov, Generalized operator Yang-Baxter equations, integrable ODES and nonassociative algebras, J. Nonlinear Math. Phys. 7 (2000), 184-197. https://doi.org/10.2991/jnmp.2000.7.2.5
  13. I. Z. Golubschik, V. V. Sokolov, and S. I. Svinolupov, New class of nonassociative algebras and a generalized factorization method, Preprint ESI, Vienna 53, 1993.
  14. J.-L. Koszul, Domaines bornes homogenes et orbites de groupes de transformations affines, Bull. Soc. Math. France 89 (1961), 515-533.
  15. X. X. Li, D. P. Hou, and C. M. Bai, Rota-Baxter operators on pre-Lie algebras, J. Nonlinear Math. Phys. 14 (2007), no. 2, 269-289. https://doi.org/10.2991/jnmp.2007.14.2.10
  16. A. Makhlouf and D. Yau, Rota-Baxter Hom-Lie-admissible algebras, Comm. Algebra 42 (2014), no. 3, 1231-1257. https://doi.org/10.1080/00927872.2012.737075
  17. V. V. Sokolov and S. I. Svinolupov, Deformations of nonassociative algebras and integrable differential equations, Acta Appl. Math. 41 (1995), no. 1-3, 323-339. https://doi.org/10.1007/BF00996121
  18. S. I. Svinolupov, On the analogues of the Burgers equation, Phys. Lett. A 135 (1989), no. 1, 32-36. https://doi.org/10.1016/0375-9601(89)90721-4
  19. S. I. Svinolupov and V. V. Sokolov, Vector-matrix generalizations of classical integrable equations, Theoret. Math. Phys. 100 (1994), no. 2, 959-962. https://doi.org/10.1007/BF01016758
  20. E. B. Vinberg, Convex homogeneous cones, Transl. Moscow Math. Soc. 12 (1963), 340-403.