참고문헌
- T. Altenkirch and B. Reus, Monadic presentation of lambda terms using generalized inductive types, Computer science logic (Madrid, 1999), 453-468, Lecture Notes in Comput. Sci., 1683, Springer, Berlin, 1999.
- B. Aydemir, A. Chargueraud, B. C. Pierce, R. Pollack, and S. Weirich, Engineering formal metatheory, ACM SIGPLAN Notices 43 (2008), no. 1, 3-15.
- S. Berghofer and C. Urban, A head-to-head comparison of de Bruijn indices and names, Electronic Notes in Theoretical Computer Science 174 (2007), no. 5, 53-67.
- R. S. Bird and L. Meertens, Nested datatypes, Lecture Notes in Computer Science 1422 (1998), 52-67.
- R. S. Bird and R. Paterson, de Bruijn notation as a nested datatype, J. Funct. Programming 9 (1999), no. 1, 77-91. https://doi.org/10.1017/S0956796899003366
- A. Chargueraud, The locally nameless representation, J. Automat. Reason. 49 (2012), no. 3, 363-408. https://doi.org/10.1007/s10817-011-9225-2
- Coq Development Team, The Coq Proof Assistant Reference Manual, Available at http://coq.inria.fr.
- T. Coquand, An algorithm for testing conversion in type theory, Logical frameworks (Sophia-Antipolis, 1990), 255-279, Cambridge Univ. Press, Cambridge, 1991.
- H. B. Curry and R. Feys, Combinatory Logic. Vol. I, North Holland, 1958.
- M. J. Gabbay and A. M. Pitts, A new approach to abstract syntax with variable binding, Formal Aspects of Computing 13 (2002), no. 3-5, 341-363. https://doi.org/10.1007/s001650200016
- G. Gentzen, Untersuchungen uber das logische SchlieBen. I, Math. Z. 39 (1935), no. 1, 176-210. https://doi.org/10.1007/BF01201353
-
H. Herbelin, A
$\lambda$ -calculus structure isomorphic to Gentzen-style sequent calculus structure , Lecture Notes in Computer Science 933 (1995), 61-75. -
H. Herbelin, Sequents quon calcule: de l'interpretation du calcul des sequents comme calcul de
$\lambda$ -termes et comme calcul de strategies gagnantes, Ph.D. thesis, Universite Paris 7, 1995. - H. Herbelin and G. Lee, Forcing-based cut-elimination for Gentzen-style intuitionistic sequent calculus, Logic, language, information and computation, 209-217, Lecture Notes in Comput. Sci., 5514, Lecture Notes in Artificial Intelligence, Springer, Berlin, 2009.
- D. Ilik, G. Lee, and H. Herbelin, Kripke models for classical logic, Ann. Pure Appl. Logic 161 (2010), no. 11, 1367-1378. https://doi.org/10.1016/j.apal.2010.04.007
- S. A. Kripke, A Completeness Theorem in Modal Logic, J. Symb. Logic 24 (1959), no. 1, 1-14. https://doi.org/10.2307/2964568
- S. A. Kripke, Semantical considerations on modal logic, Acta Philos. Fenn. 16 (1963), 83-94.
- C. McBride and J. McKinna, The view from the left, J. Funct. Programming 14 (2004), no. 1, 69-111. https://doi.org/10.1017/S0956796803004829
- J. McKinna and R. Pollack, Pure type systems formalized, Typed lambda calculi and applications (Utrecht, 1993), 289-305, Lecture Notes in Comput. Sci., 664, Springer, Berlin, 1993.
- J. McKinna and R. Pollack, Some lambda calculus and type theory formalized, J. Automat. Reason. 23 (1999), no. 3-4, 373-409. https://doi.org/10.1023/A:1006294005493
- G. Mints, Normal forms for sequent derivations, Kreiseliana, 469-492, A. K. Peters, Wellesley, MA, 1996.
- U. Norell, Dependently typed programming in Agda, in A. Kennedy and A. Ahmed, editors, Proceeding of TLDI'09, ACM, 2009, 1-2.
- A. M. Pitts, Nominal logic, a first order theory of names and binding, Inform. and Comput. 186 (2003), no. 2, 165-193. https://doi.org/10.1016/S0890-5401(03)00138-X
-
M. Sato and R. Pollack, External and internal syntax of the
$\lambda$ -calculus, J. Symbolic Comput. 45 (2010), no. 5, 598-616. https://doi.org/10.1016/j.jsc.2010.01.010 - A. Stump, Poplmark 1a with named bound variables, Available at https://www.seas.upenn.edu/-plclub/poplmark/stump.html/.
- A. S. Troelstra and D. van Dalen, Constructivism in Mathematics: An Introduction I and II, Stud. Logic Found. Math., vol. 121, 123, North-Holland, 1988.
- C. Urban, Nominal Techniques in Isabelle/HOL, J. Automat. Reason. 40 (2008), no. 4, 327-356. https://doi.org/10.1007/s10817-008-9097-2