참고문헌
- A. E. Brown, A Structure theorem for a class of grade three perfect ideals, J. Algebra 105 (1987), no. 2, 308-327. https://doi.org/10.1016/0021-8693(87)90196-7
- D. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions and some structure theorems for ideals for codimension 3, Amer. J. Math. 99 (1977), no. 3 447-485. https://doi.org/10.2307/2373926
- Y. S. Cho, O.-J. Kang, and H. J. Ko, Perfect ideal of grade three defined by skew-symmetrizable matrix, Bull. Korean. Math. Soc. 49 (2012), no. 4, 715-736. https://doi.org/10.4134/BKMS.2012.49.4.715
- E. J. Choi, O.-J. Kang, and H. J. Ko, On the structure of grade three perfect ideal of type three, Commun. Korean Math. Soc. 23 (2008), no. 4, 487-497. https://doi.org/10.4134/CKMS.2008.23.4.487
- E. J. Choi, O.-J. Kang, and H. J. Ko, The structure for some classes of grade three perfect ideal, Comm. Algebra 39 (2011), no. 9, 3435-3461. https://doi.org/10.1080/00927872.2010.512586
- E. Davis, A. Geramita, and F. Orrechia, Hilbert functions of linked varieties, The curves seminar at Queen's, Vol. III (Kingston, Ont., 1983), Exp. No. F, 11 pp., Queen's Papers in Pure and Appl. Math., 67, Queen's Univ., Kingston, ON, 1984.
- T. Harima, Some examples of unimodal Gorenstein sequence, J. Pure Appl. Algebra 103 (1995), no. 3, 313-324. https://doi.org/10.1016/0022-4049(95)00109-A
- A. Iarrobino and H. Srinivasan, Artinian Gorenstein algebras of embedding dimension four: components of PGOR(H) for H = (1, 4, 7, . . . , 1), J. Pure Appl. Algebra 201 (2005), no. 1-3, 62-96. https://doi.org/10.1016/j.jpaa.2004.12.015
- O.-J. Kang, Y. S. Cho, and H. J. Ko, Structure theory for some classes of grade three perfect ideals, J. Algebra. 322 (2009), no. 8, 2680-2708. https://doi.org/10.1016/j.jalgebra.2009.07.021
- O.-J. Kang and H. J. Ko, The structure theorem for complete intersections of grade 4, Algebra Colloq. 12 (2005), no. 2, 181-197. https://doi.org/10.1142/S1005386705000179
- O.-J. Kang and H. J. Ko, Structure theorem for complete intersetions, Commun. Korean Math. Soc 21 (2006), no. 4, 613-630. https://doi.org/10.4134/CKMS.2006.21.4.613
- O.-J. Kang and J. Kim, A class of grade three determinantal ideals, Homan Math. J. 34 (2012), no. 2, 279-287.
- H. J. Ko and Y. S. Shin, Unimodal sequences of Gorenstein ideals of codimension 4, Acta. Math. Sinica (N.S.) 14 (1998), no. 4, 563-568. https://doi.org/10.1007/BF02580415
- A. Kustin and M. Miller, Structure theory for a class of grade four Gorenstein ideals, Trans. Amer. Math. Soc. 270 (1982), no. 1, 287-307. https://doi.org/10.1090/S0002-9947-1982-0642342-4
- S. Seo and H. Srinivasan, On unimodality of Hilbert functions of Gorenstein Artin Algebras of embedding dimension four, Comm. Algebra 40 (2012), no. 8, 2893-2905. https://doi.org/10.1080/00927872.2011.587216
- Y. S. Shin, The construction of some Gorenstein ideals of codimension 4, J. Pure Appl. Algebra 127 (1998), no. 3, 289-307. https://doi.org/10.1016/S0022-4049(96)00179-X
- R. P. Stanley, Hilbert functions of graded algebras, Adv. Math 28 (1978), no. 1, 57-83. https://doi.org/10.1016/0001-8708(78)90045-2