DOI QR코드

DOI QR Code

A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams

  • Received : 2017.10.02
  • Accepted : 2018.03.13
  • Published : 2017.12.25

Abstract

In this paper, an improved theoretical solution for interfacial stress analysis is presented for simply supported concrete beam bonded with a sandwich FGM plate. Interfacial stress analysis is presented for simply supported concrete beam bonded with a sandwich plate. This improved solution is intended for application to beams made of all kinds of materials bonded with a thin plate, while all existing solutions have been developed focusing on the strengthening of reinforced concrete beams, which allowed the omission of certain terms. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam. A numerical parametric study was performed for different simulated cases to assess the effect of several parameters. Numerical comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters. The results of this study indicated that the FGM sandwich panel strengthening systems are effective in enhancing flexural behavior of the strengthened RC beams.

Keywords

Acknowledgement

Supported by : French Ministry of Foreign Affairs and International Development (MAEDI), Ministry of National Education, Higher Education and Research (MENESR), Algerian Ministry of Higher Education and Scientific Research (MESRS)

References

  1. Abdelhak, Z., Hadji, L., Hassaine Daouadji, T.H. and Adda, B. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., Int. J., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267
  2. Abderezak, B., Hassaine Daouadji, T.H., Abbes, B., Rabia, B., Belkacem, A. and Abbes, F. (2018), "Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage", Adv. Mater. Res., Int. J., 6(3), 257-278.
  3. Adim, B., Hassaine Daouadji, T.H. and Rabahi, A. (2016a), "A simple higher order shear deformation theory for mechanical behavior of laminated composite plates", Int. J. Adv. Struct. Eng., 8(2), 103-117. https://doi.org/10.1007/s40091-016-0109-x
  4. Adim, B., Hassaine Daouadji, T.H., Abbes, B. and Rabahi, A. (2016b), "Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory", J. Mech. Ind., 17(5), 512. https://doi.org/10.1051/meca/2015112
  5. Alam, M.A. and Al Riyami, K. (2018), "Shear strengthening of reinforced concrete beam using natural fibre reinforced polymer laminates", Constr. Build. Mater., 162, 683-696. https://doi.org/10.1016/j.conbuildmat.2017.12.011
  6. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2015), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazil. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  7. Benferhat, R., Hassaine Daouadji, T.H., Mansour, M.S. and Hadji, L. (2016a), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., Int. J., 10(5), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429
  8. Benferhat, R., Hassaine Daouadji, T.H. and Mansour, M.S. (2016b), "Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory", Comptes Rendus Mecanique, 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002
  9. Bensattalah, T., Hassaine Daouadji, T.H., Zidour, M., Tounsi, A. and Bedia, E.A. (2016), "Investigation of thermal and chirality effects on vibration of single walled carbon nanotubes embedded in a polymeric matrix using nonlocal elasticity theories", Mech. Compos. Mater., 52(4), 555-568. https://doi.org/10.1007/s11029-016-9606-z
  10. Bouakaz, K., Hassaine Daouadji, T.H., Meftah, S.A., Ameur, M., Tounsi, A. and Bedia, E.A. (2014), "A Numerical analysis of steel beams strengthened with composite materials", Mech. Compos. Mater., 50(4), 685-696.
  11. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  12. Ge, W.J., Ashour, A.F., Ji, X., Cai, C. and Cao, D.F. (2018), "Flexural behavior of ECC-concrete composite beams reinforced with steel bars", Constr. Build. Mater., 159, 175-188. https://doi.org/10.1016/j.conbuildmat.2017.10.101
  13. Guenaneche, B. and Tounsi, A. (2014), "Effect of shear deformation on interfacial stress analysis in plated beams under arbitrary loading", Int. J. Adhes. Adhes., 48, 1-13. https://doi.org/10.1016/j.ijadhadh.2013.09.016
  14. Krour, B., Bernard, F. and Tounsi, A. (2014), "Fibers orientation optimization for concrete beam strengthened with a CFRP bonded plate: A coupled analytical-numerical investigation", Eng. Struct., 56, 218-227.
  15. Hassaine Daouadji, T.H., Henni, A.H., Tounsi, A. and El Abbes, A.B. (2013), "Elasticity solution of a cantilever functionally graded beam", Appl. Compos. Mater., 20(1), 1-15. https://doi.org/10.1007/s10443-011-9243-6
  16. Hassaine Daouadji, T.H., Benferhat, R. and Adim, B. (2016a), "A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load", Adv. Mater. Res., Int. J., 5(2), 107-123.
  17. Hassaine Daouadji, T.H., Hadji, L., Meziane, M.A.A. and Bekki, H. (2016b), "Elastic analysis effect of adhesive layer characteristics in steel beam strengthened with a fiber-reinforced polymer plates", Struct. Eng. Mech., Int. J., 59(1), 83-100. https://doi.org/10.12989/sem.2016.59.1.083
  18. Hassaine Daouadji, T.H., Rabahi, A., Abbes, B. and Adim, B. (2016c), "Theoretical and finite element studies of interfacial stresses in reinforced concrete beams strengthened by externally FRP laminates plate", J. Adhes. Sci. Technol., 30(12), 1253-1280. https://doi.org/10.1080/01694243.2016.1140703
  19. Hadji, L., Hassaine Daouadji, T.H. and Bedia, E.A. (2016), "Dynamic behavior of FGM beam using a new first shear deformation theory", Earthq. Struct., Int. J., 10(2), 451-461. https://doi.org/10.12989/eas.2016.10.2.451
  20. Huang, L., Zhang, C., Yan, L. and Kasal, B. (2018), "Flexural behavior of U-shape FRP profile-RC composite beams with inner GFRP tube confinement at concrete compression zone", Compos. Struct., 184, 674-687. https://doi.org/10.1016/j.compstruct.2017.10.029
  21. Keskin, R.S.O., Arslan, G. and Sengun, K. (2017), "Influence of CFRP on the shear strength of RC and SFRC beams", Constr. Build. Mater., 153, 16-24. https://doi.org/10.1016/j.conbuildmat.2017.06.170
  22. Mahi, B.E., Benrahou, K.H., Belakhdar, Kh., Tounsi, A. and Adda Bedia, E.A. (2014), "Effect of the tapered end of a FRP plate on the interfacial stresses in a strengthened beam used in civil engineering applications", Mech. Compos. Mater., 50(4), 465-474.
  23. Mantari, J.L. and Soares, C.G. (2014), "A trigonometric plate theory with 5-unknowns and stretching effect for advanced composite plates", Compos. Struct., 107, 396-405. https://doi.org/10.1016/j.compstruct.2013.07.046
  24. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2015), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", journal of sandwich structures and materials, 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  25. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall., 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  26. Hadi, M.N. and Yuan, J.S. (2017), "Experimental investigation of composite beams reinforced with GFRP Ibeam and steel bars", Constr. Build. Mater., 144, 462-474. https://doi.org/10.1016/j.conbuildmat.2017.03.217
  27. Rabahi, A., Hassaine Daouadji, T.H., Abbes, B. and Adim, B. (2015a), "Analytical and numerical solution of the interfacial stress in reinforced-concrete beams reinforced with bonded prestressed composite plate", J. Reinf. Plast. Compos., 35(3), 258-272. https://doi.org/10.1177/0731684415613633
  28. Rabahi, A., Adim, B., Chargui, S. and Hassaine Daouadji, T.H. (2015b), "Interfacial stresses in FRP-plated RC beams: effect of adherend shear deformations", In: Multiphysics Modelling and Simulation for Systems Design and Monitoring, Volume 2, pp. 317-326.
  29. Smith, S.T. and Teng, J.G. (2001), "Interfacial stresses in plated beams", Eng. Struct., 23(7), 857-871. https://doi.org/10.1016/S0141-0296(00)00090-0
  30. Touati, M., Tounsi, A. and Benguediab, M. (2015), "Effect of shear deformation on adhesive stresses in plated concrete beams: Analytical solutions", Comput. Concrete, Int. J., 15(3), 141-166. https://doi.org/10.12989/cac.2015.15.2.141
  31. Tounsi, A. (2006), "Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate", Int. J. Solids Struct., 43(14-15), 4154-4174. https://doi.org/10.1016/j.ijsolstr.2005.03.074
  32. Tounsi, A., Hassaine Daouadji, T.H. and Benyoucef, S. (2008), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", Int. J. Adhes. Adhes., 29(4), 343-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008
  33. Yang, J. and Wu, Y.F. (2007), "Interfacial stresses of FRP strengthened concrete beams: Effect of shear deformation", Compos. Struct., 80(3), 343-351. https://doi.org/10.1016/j.compstruct.2006.05.016
  34. Yang, J. and Ye, J. (2010), "An improved closed-form solution to interfacial stresses in plated beams using a two-stage approach", Int. J. Mech. Sci., 52(1), 13-30. https://doi.org/10.1016/j.ijmecsci.2009.09.041
  35. Yang, J., Ye, J. and Niu, Z. (2007), "Interfacial shear stress in FRP-plated RC beams under symmetric loads", Cement Concrete Compos., 29(5), 421-432 https://doi.org/10.1016/j.cemconcomp.2006.11.011
  36. Yeghnem, R., Guerroudj, H.Z., Amar, L.H.H., Meftah, S.A., Benyoucef, S., Tounsi, A. and Adda Bedia, E.A. (2017), "Numerical modeling of the aging effects of RC shear walls strengthened by CFRP plates: A comparison of results from different code type models", Comput. Concrete, Int. J., 19(5), 579-588. https://doi.org/10.12989/cac.2017.19.5.579
  37. Zidani, M.H.B., Belakhdar, K. and Tounsi, A. (2015), "Finite element analysis of initially damaged beams repaired with FRP plates", Compos. Struct., 134, 429-439. https://doi.org/10.1016/j.compstruct.2015.07.124

Cited by

  1. Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates vol.7, pp.2, 2017, https://doi.org/10.12989/amr.2018.7.2.119
  2. Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix vol.70, pp.3, 2019, https://doi.org/10.12989/sem.2019.70.3.269
  3. Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2017, https://doi.org/10.12989/amr.2020.9.4.265
  4. Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis vol.9, pp.4, 2017, https://doi.org/10.12989/amr.2020.9.4.265
  5. Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.575
  6. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2017, https://doi.org/10.12989/sem.2021.77.2.217
  7. Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2017, https://doi.org/10.12989/csm.2021.10.1.061
  8. Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations vol.77, pp.6, 2017, https://doi.org/10.12989/sem.2021.77.6.797
  9. Modeling and analysis of the imperfect FGM-damaged RC hybrid beams vol.6, pp.2, 2017, https://doi.org/10.12989/acd.2021.6.2.117
  10. A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage vol.79, pp.5, 2017, https://doi.org/10.12989/sem.2021.79.5.531
  11. New solution for damaged porous RC cantilever beams strengthening by composite plate vol.10, pp.3, 2017, https://doi.org/10.12989/amr.2021.10.3.169