DOI QR코드

DOI QR Code

Use of Atmospheric Pressure Cold Plasma for Meat Industry

  • Lee, Juri (Division of Animal and Dairy Science, Chungnam National University) ;
  • Lee, Cheol Woo (Division of Animal and Dairy Science, Chungnam National University) ;
  • Yong, Hae In (Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Lee, Hyun Jung (Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Jo, Cheorun (Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Jung, Samooel (Division of Animal and Dairy Science, Chungnam National University)
  • 투고 : 2017.08.08
  • 심사 : 2017.08.22
  • 발행 : 2017.08.31

초록

Novel, effective methods to control and prevent spoilage and contamination by pathogenic microorganisms in meat and meat products are in constant demand. Non-thermal pasteurization is an ideal method for the preservation of meat and meat products because it does not use heat during the pasteurization process. Atmospheric pressure cold plasma (APCP) is a new technology for the non-thermal pasteurization of meat and meat products. Several recent studies have shown that APCP treatment reduces the number of pathogenic microorganisms in meat and meat products. Furthermore, APCP treatment can be used to generate nitrite, which is an essential component of the curing process. Here, we introduce the effectiveness of APCP treatment as a pasteurization method and/or curing process for use in the meat and meat product processing industry.

키워드

참고문헌

  1. Afshari, R. and Hosseini, H. (2014) Non-thermal plasma as a new food preservation method, its present and future prospect. J. Paramed Sci. 5, 116-120.
  2. Ahn, D. U., Feng, X., Lee, E. J., Zhang, W., Lee, J. W., Jo, C., and Nam, K. C. (2016) Mechanisms of volatile production from non-sulfur amino acids by irradiation. Radiat. Phy. Chem. 119, 64-73. https://doi.org/10.1016/j.radphyschem.2015.09.008
  3. Alahakoon, A. U., Jayasena, D. D., Ramachandra, S., and Jo, C. (2015) Alternatives to nitrite in processed meat: Up to date. Trends Food Sci. Tech. 45, 37-49. https://doi.org/10.1016/j.tifs.2015.05.008
  4. Armenteros, M., Morcuende, D., Ventanas, J., and Estevez, M. (2016) The application of natural antioxidants via brine injection protects iberian cooked hams against lipid and protein oxidation. Meat Sci. 116, 253-259. https://doi.org/10.1016/j.meatsci.2016.02.027
  5. Awuah, G. B., Ramaswamy, H. S., and Economides, A. (2007) Thermal processing and quality: Principles and overview. Chem. Eng. Process. 46, 584-602. https://doi.org/10.1016/j.cep.2006.08.004
  6. Bauer, A., Ni, Y., Bauer, S., Paulsen, P., Modic, M., Walsh, J. L., and Smulders, F. J. M. (2017) The effects of atmospheric pressure cold plasma treatment on microbiological, physical-chemical and sensory characteristics of vacuum packaged beef loin. Meat Sci. 128, 77-87. https://doi.org/10.1016/j.meatsci.2017.02.003
  7. Biesalski, H. K. (2005) Meat as a component of a healthy diet - Are there any risks or benefits if meat is avoided in the diet? Meat Sci. 70, 509-524. https://doi.org/10.1016/j.meatsci.2004.07.017
  8. Bogaerts, A., Neyts, E., Gijbels, R., and van der Mullen, J. (2002) Gas discharge plasmas and their applications. Spectrochim. Acta B. 57, 609-658. https://doi.org/10.1016/S0584-8547(01)00406-2
  9. Cheftel, J. C. (1995) Review: High-pressure, microbial inactivation and food preservation. Food Sci. Technol. Int. 1, 75-90. https://doi.org/10.1177/108201329500100203
  10. Chen, J. H., Ren, Y., Seow, J., Liu, T., Bang, W. S., and Yuk, H. G. (2011) Intervention techynologies for ensuring microbiological safety of meat: Current and future trends. Compr. Rev. Food Sci. Food Saf. 11, 119-132.
  11. Conrads, H. and Schmidt, M. (2000) Plasma generation and plasma sources. Plasma Sources Sci. T. 9, 441-454. https://doi.org/10.1088/0963-0252/9/4/301
  12. Cullen, P. J., Misra, N. N., Han, L., Bourke, P., Keener, K., O'Donnell, C., Moiseev, T., Mosnier, J. P., and Milosavljevic, V. (2014) Inducing a dielectric barrier discharge plasma within a package. IEEE Trans Plamsa Sci. 42, 2368-2369. https://doi.org/10.1109/TPS.2014.2321568
  13. Deng, S. B., Ruan, R., Mok, C. K., Huang, G. W., Lin, X. Y., and Chen, P. (2007) Inactivation of Escherichia coli on almonds using nonthermal plasma. J. Food Sci. 72, M62-M66. https://doi.org/10.1111/j.1750-3841.2007.00275.x
  14. Dirks, B. P., Dobrynin, D., Fridman, G., Mukhin, Y., Fridman, A., and Quinlan, J. J. (2012) Treatment of raw poultry with nonthermal dielectric barrier discharge plasma to reduce Campylobacter jejuni and Salmonella enterica. J. Food Protect. 75, 22-28. https://doi.org/10.4315/0362-028X.JFP-11-153
  15. Dobrynin, D., Fridman, G., Friedman, G., and Fridman, A. (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J. Phys. 11, 115020. https://doi.org/10.1088/1367-2630/11/11/115020
  16. Eliasson, B. and Kogelschatz, U. (1991) Modeling and applications of silent discharge plasmas. IEEE Trans Plamsa Sci. 19, 309-323. https://doi.org/10.1109/27.106829
  17. Ercan, U. K., Smith, J., Ji, H. F., Brooks, A. D., and Joshi, S. G. (2016) Chemical changes in nonthermal plasma-treated N-Acetylcysteine (NAC) solution and their contribution to bacterial inactivation. Sci. Rep. 6, 20365. https://doi.org/10.1038/srep20365
  18. Han, L., Patil, S., Boehm, D., Milosavljevic, V., Cullen, P. J., and Bourke, P. (2016) Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl. Environ. Microb. 82, 450-458. https://doi.org/10.1128/AEM.02660-15
  19. Jayasena, D. D., Kim, H. J., Yong, H. I., Park, S., Kim, K., Choe, W., and Jo, C. (2015) Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes. Food Microbiol. 46, 51-57. https://doi.org/10.1016/j.fm.2014.07.009
  20. Jung, S., Kim, H. J., Park, S., Yong, H. I., Choe, J. H., Jeon, H. J., Choe, W., and Jo, C. (2015) The use of atmospheric pressure plasma-treated water as a source of nitrite for emulsiontype sausage. Meat Sci. 108, 132-137. https://doi.org/10.1016/j.meatsci.2015.06.009
  21. Jung, S., Lee, C. W., Lee, J., Yong, H. I., Yum, S. J., Jeong, H. G., and Jo, C. (2017a) Increase in nitrite content and functionality of ethanolic extracts of Perilla frutescens by treatment with atmospheric pressure plasma. Food Chem. 237, 191-197. https://doi.org/10.1016/j.foodchem.2017.05.095
  22. Jung, S., Lee, J., Lim, Y., Choe, W., Yong, H. I., and Jo, C. (2017b) Direct infusion of nitrite into meat batter by atmospheric pressure plasma treatment. Innov. Food Sci. Emerg. Technol. 39, 113-118. https://doi.org/10.1016/j.ifset.2016.11.010
  23. Kim, B., Yun, H., Jung, S., Jung, Y., Jung, H., Choe, W., and Jo, C. (2011) Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiol. 28, 9-13.
  24. Kim, H. J., Alahakoon, A. U., Jayasena, D. D., Khan, M. I., Nam, K. C., Jo, C., and Jung, S. (2015) Effects of electron beam irradiation and high-pressure treatment with citrus peel extract on the microbiological, chemical and sensory qualities of marinated chicken breast meat. Korean J. Poult. Sci. 42, 215-221. https://doi.org/10.5536/KJPS.2015.42.3.215
  25. Kim, H. J., Sung, N. Y., Yong, H. I., Kim, H., Lim, Y., Ko, K. H., Yun, C. H., and Jo, C. (2016) Mutagenicity and immune toxicity of emulsion-type sausage cured with plasma-treated water. Korean J. Food Sci. An. 36, 494-498. https://doi.org/10.5851/kosfa.2016.36.4.494
  26. Kim, H. J., Yong, H. I., Park, S., Choe, W., and Jo, C. (2013) Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin. Curr. Appl. Phys. 13, 1953-1953. https://doi.org/10.1016/j.cap.2013.08.001
  27. Kim, Y. I., Lee, E. J., Lee, N. H., Kim, Y. H., and Yamamoto, K. (2007) Effects of hydrostatic pressure treatment on the physicochemical, morphological, and textural properties of bovine semitendinosus muscle. Food Sci. Biotechnol. 16, 49-54.
  28. Kogelschatz, U. (2003) Dielectric-barrier discharges: Their history, discharge physics, and inducstrial applications. Plasma Chem. Plasma Process. 23, 1-46. https://doi.org/10.1023/A:1022470901385
  29. Kojtari, A., Ercan, U. K., Smith, J., Friedman, G., Sensening, R. B., Tyagi, S., Joshi, S. G., Ji, H. F., and Brooks, A. D. (2013) Chemistry for antimicrobial properties of water treated with non-equilibrium plasma. J. Nanomed. Bioterapeutic Discov. 4, 1000120.
  30. Kovacevic, V. V., Dojcinovic, B. P., Jovic, M., Roglic, G. M., Obradovic, B. M., and Kuraica, M. M. (2017) Measurement of reactive species generated by dielectric barrier discharge in direct contact with water in different atmospheres. J. Phys. D Appl. Phys. 50, 155205. https://doi.org/10.1088/1361-6463/aa5fde
  31. Laroussi, M. and Leipold, F. (2004) Evaluation of the roles of reactive species, heat, and uv radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int. J. Mass Spectrom. 233, 81-86. https://doi.org/10.1016/j.ijms.2003.11.016
  32. Lee, H., Yong, H. I., Kim, H. J., Choe, W., Yoo, S. J., Jang, E. J., and Jo, C. (2016) Evaluation of the microbiological safety, quality changes, and genotoxicity of chicken breast treated with flexible thin-layer dielectric barrier discharge plasma. Food Sci. Biotechnol. 25, 1189-1195. https://doi.org/10.1007/s10068-016-0189-1
  33. Lee, H. J., Jung, H., Choe, W., Ham, J. S., Lee, J. H., and Jo, C. (2011) Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets. Food Microbiol. 28, 1468-1471. https://doi.org/10.1016/j.fm.2011.08.002
  34. Lee, J., Jo, K., Lim, Y., Jeon, H. J., Choe, J. H., Jo, C., and Jung, S. (2018) The use of atmospheric pressure plasma as a curing process for canned ground ham. Food Chem. 240, 430-436. https://doi.org/10.1016/j.foodchem.2017.07.148
  35. Lukes, P., Dolezalova, E., Sisrova, I., and Clupek, M. (2014) Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of $H_2O_2$ and $HNO_2$. Plasma Sources Sci. T. 23, 015019. https://doi.org/10.1088/0963-0252/23/1/015019
  36. Lund, M. N., Heinonen, M., Baron, C. P., and Estevez, M. (2011) Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 55, 83-95. https://doi.org/10.1002/mnfr.201000453
  37. Mir, S. A., Shah, M. A., and Mir, M. M. (2016) Understanding the role of plasma technology in food industry. Food Bioprocess Technol. 9, 734-750 https://doi.org/10.1007/s11947-016-1699-9
  38. Misra, N. N. and Jo, C. (2017) Applications of cold plasma technology for microbiological safety in meat industry. Trends Food Sci. Technol. 64, 74-86. https://doi.org/10.1016/j.tifs.2017.04.005
  39. Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., and Cullen, P. J. (2011) Nonthermal plasma inactivation of food-borne pathogens. Food Eng. Rev. 3, 159-170. https://doi.org/10.1007/s12393-011-9041-9
  40. Napartovich, A. P. (2001) Overview of atmospheric pressure discharges producing nonthermal plasma. Plasmas Polym. 6, 53-68.
  41. Nehra, V., Kumar, A., and Dwivedi, H. K. (2008) Atmospheric non-thermal plasma sources. Int. J. Eng. 2, 53-68.
  42. Noriega, E., Shama, G., Laca, A., Diaz, M., and Kong, M. G. (2011) Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiol. 28, 1293-1300. https://doi.org/10.1016/j.fm.2011.05.007
  43. Oehmigen, K., Hahnel, M., Brandenburg, R., Wilke, C., Weltmann, K. D., and von Woedtke, T. (2010) The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process. Polym. 7, 250-257. https://doi.org/10.1002/ppap.200900077
  44. Ono, R. and Oda, T. (2003) Dynamics of ozone and OH radicals generated by pulsed corona discharge in humid-air flow reactor measured by laser spectroscopy. J. Appl. Phys. 93, 5876-5882. https://doi.org/10.1063/1.1567796
  45. Parthasarathy, D. K. and Bryan, N. S. (2012) Sodium nitrite: The "cure" for nitric oxide insufficiency. Meat Sci. 92, 274-279. https://doi.org/10.1016/j.meatsci.2012.03.001
  46. Rayson, M. S., Mackie, J. C., Kenndy, E. M., and Dlugogorshi, B. Z. (2012) Accurate rate constants for decomposition of aqueous nitrous acid. Inorg. Chem. 51, 2178-2185. https://doi.org/10.1021/ic202081z
  47. Sakiyama, Y., Graves, D. B., Chang, H. W., Shimizu, T., and Morfill, G. E. (2012) Plasma chemistry model of sulface microdischarge in humid air and dynamics of reactive neutral species. J. Phys. D: Appl. Phys. 45, 425201. https://doi.org/10.1088/0022-3727/45/42/425201
  48. Schluter, O., Ehlbeck, J., Hertel, C., Habermeyer, M., Roth, A., Engel, K. H., Holzhauser, T., Knorr, D., and Eisenbrand, G. (2013) Opinion on the use of plasma processes for treatment of foods. Mol. Nutr. Food Res. 57, 920-927. https://doi.org/10.1002/mnfr.201300039
  49. Sebranek, J. G., Jackson-Davis, A. L., Myers, K. L., and Lavieri, N. A. (2012) Beyond celery and starter culture: Advances in natural/organic curing processes in the united states. Meat Sci. 92, 267-273. https://doi.org/10.1016/j.meatsci.2012.03.002
  50. Sensening, R., Kalghatgi, S., Cerchar, E., Fridman, G., Shereshevsky, A., Torabi, B., Arjunan, K. P., Podolsky, E., Fridman, A., and Friedman, G. (2011) Nonthermal plasma induces apoptosis in melanoma cells via production of intracellular reactive oxygen species. Ann. Biomed. Eng. 39, 674-687. https://doi.org/10.1007/s10439-010-0197-x
  51. Thomas, D. and Vanderschuren, J. (1997) Modeling of NO x absorption into nitric acid solutions containing hydrogen peroxide. Ind. Eng. Chem. Res. 36, 3315-3322. https://doi.org/10.1021/ie960436g
  52. Yong, H. I., Kim, H. J., Park, S., Choe, W., Oh, M. H., and Jo, C. (2014) Evaluation of the treatment of both sides of raw chicken breasts with an atmospheric pressure plasma jet for the inactivation of Eschericia coli. Foodborne Pathog. Dis. 11, 652-657. https://doi.org/10.1089/fpd.2013.1718
  53. Yong, H. I., Lee, H., Park, S., Park, J., Choe, W., Jung, S., and Jo, C. (2017a) Flexible thin-layer plasma inactivation of bacteria and mold survival in beef jerky packaging and its effects on the meat's physicochemical properties. Meat Sci. 123, 151-156. https://doi.org/10.1016/j.meatsci.2016.09.016
  54. Yong, H. I., Park, J., Kim, H. J., Jung, S., Park, S., Lee, H. J., Choe, W., and Jo. C. (2017b) An innovative curing process with plasma-treated water for production of loin ham and for its quality and safery. Plasma Process. Polym. DOI:10.1002/ppap.201700050.
  55. Yusupov, M., Bogaerts, A., Huygh, S., Snoeckx, R., van Duin, A. C. T., and Neyts, E. C. (2013) Plasma-induced destruction of bacterial cell wall components: A reactive molecular dynamics simulation. J. Phys. Chem. C. 117, 5993-5998. https://doi.org/10.1021/jp3128516
  56. Zhang, H. and Mittal, G. S. (2008) Effects of high-pressure processing (hpp) on bacterial spores: An overview. Food Rev. Int. 24, 330-351. https://doi.org/10.1080/87559120802089290
  57. Ziuzina, D., Petil, S., Cullen, P. J., Keener, K. M., and Bourke, P. (2014) Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol. 42, 109-116. https://doi.org/10.1016/j.fm.2014.02.007

피인용 문헌

  1. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications pp.15414337, 2018, https://doi.org/10.1111/1541-4337.12398
  2. Mechanism Underlying Green Discolouration of Myoglobin Induced by Atmospheric Pressure Plasma vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-28096-4
  3. Fully coupled modeling of nanosecond pulsed plasma assisted combustion ignition vol.52, pp.9, 2019, https://doi.org/10.1088/1361-6463/aaf690
  4. O157:H7 biofilm by different plasma-treated solutions and post-treatment storage vol.114, pp.7, 2019, https://doi.org/10.1063/1.5082657
  5. The curing of meat batter by the plasma treated juice of red perilla vol.45, pp.3, 2017, https://doi.org/10.7744/kjoas.20180022
  6. Quality of Sliced Cured Pork Loin with Spinach: Effect of Incubation Period with Starter Culture vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/6373671
  7. INFLUENCE OF FOOD ADDITIVE “MAGNETOFOOD” ON PHYSICAL AND CHEMICAL PARAMETERS, FUNCTIONAL PROPERTIES OF MODEL MINCED MEAT SYSTEMS vol.13, pp.2, 2017, https://doi.org/10.15673/fst.v13i2.1389
  8. Effect of Atmospheric Pressure Cold Plasma on Biophysical Properties and Aggregation of Natural Actomyosin from Threadfin Bream (Nemipterus bleekeri) vol.13, pp.5, 2020, https://doi.org/10.1007/s11947-020-02441-w
  9. Foodborne Viruses and Innovative Non-Thermal Food-Processing Technologies vol.9, pp.11, 2020, https://doi.org/10.3390/foods9111520
  10. Potential Use of Hyssopus officinalis and Borago officinalis as Curing Ingredients in Pork Meat Formulations vol.10, pp.12, 2020, https://doi.org/10.3390/ani10122327
  11. Effects of modified atmosphere packaging on an extended-spectrum beta-lactamase-producing Escherichia coli, the microflora, and shelf life of chicken meat vol.99, pp.12, 2017, https://doi.org/10.1016/j.psj.2020.09.021
  12. Enrichment of nitrite in onion powder using atmospheric pressure plasma and egg whites for meat curing vol.135, pp.None, 2017, https://doi.org/10.1016/j.lwt.2020.110050
  13. Impact of cold plasma on the biomolecules and organoleptic properties of foods: A review vol.86, pp.9, 2017, https://doi.org/10.1111/1750-3841.15856
  14. Modeling of atmospheric gas-stream processing using a microwave excited all-dielectric resonant plasma discharge vol.54, pp.43, 2017, https://doi.org/10.1088/1361-6463/ac17b6
  15. High hydrogen peroxide concentration-low exposure time of plasma-activated water (PAW): A novel approach for shelf-life extension of Asian sea bass (Lates calcarifer) steak vol.74, pp.None, 2017, https://doi.org/10.1016/j.ifset.2021.102861