Abstract
This work shows how to create an algorithm and implementation for motion and image matching between a vehicle simulator and Unity 3D based virtual object. The motion information of the virtual vehicle is transmitted to the real simulator via a RS232 communication protocol, and the motion is controlled based on the inverse kinematics solution of the platform adopting rotary-type six actuators driving system. Wash-out filters to implement the effective motion of the motion platform are adopted, and thereby reduce the dizziness and increase the realistic sense of motion. Furthermore, the simulator system is successfully designed aiming to reducing size and cost with adaptation of rotary-type six actuators, real driving environment via VR (Virtual Reality), and control schemes which employ a synchronization between 6 motors and 3rd order motion profiles. By providing relatively big sense of motion particularly in impact and straight motions mainly causing simulator sickness, dizziness is remarkably reduced, thereby enhancing the sense of realistic motion.