DOI QR코드

DOI QR Code

Anodic Reactions at a Pb-Ag Anode in Sulfuric Acid Solutions Containing Manganese(II)

망간(II)을 함유한 황산용액에서 Pb-Ag 양극의 산화반응

  • Lee, Man-Seung (Department of Advanced Materials Science & Engineering, Mokpo National University) ;
  • Nicol, M.J. (School of Engineering and Information Technology, Murdoch University)
  • 이만승 (목포대학교 신소재공학과) ;
  • Received : 2017.05.17
  • Accepted : 2017.06.09
  • Published : 2017.08.31

Abstract

The effect of Mn(II) concentration on the anodic reactions occurring on a Pb-Ag electrode in sulfuric acid solutions has been studied by potentiostatic oxidation in the potential range of 1.8 to 2.0 V. High oxidation potentials and low initial concentrations of Mn(II) resulted in higher concentrations of soluble Mn(III) ions which were obtained from spectrophotometric analysis of the solution after oxidation. $MnO_2$ was deposited on the electrode by electrochemical oxidation of Mn(II) at 1.8 and 1.9 V, while it was formed by disproportionation of Mn(III) at 2.0 V. No $PbO_2$ was formed in the presence of Mn(II) during potentiostatic oxidation treatment for two hours at 1.8 V. Chemical reduction of $PbO_2$ with Mn(II) led to a decrease in the amount of $PbO_2$ as Mn(II) concentration increased at 1.9 and 2.0 V.

황산용액에 함유된 망간(II)의 농도가 Pb-Ag양극의 산화거동에 미치는 영향을 1.8에서 2.0 V의 범위에서 정전위법으로 조사하였다. 산화전위가 높고 망간의 초기 농도가 낮은 조건에서는 망간(III)의 농도가 높았으며, 산화반응 후 용액을 분광학적으로 분석하여 이를 확인하였다. 1.8과 1.9 V에서는 $MnO_2$가 망간(II)의 산화에 의해 생성되나, 2.0 V에서는 망간(III)의 불균등화반응에 의해 형성되었다. 1.8 V에서 용액에 망간(II)이 존재하면 정전위조건에서 산화시킬 때 납이 $PbO_2$로 산화되지 않았다. 그러나 1.9와 2.0 V에서는 망간(II)농도가 증가함에 따라 $PbO_2$가 망간(II)에 의해 화학적으로 환원되어 $PbO_2$의 양이 감소하였다.

Keywords

References

  1. Rashkov, St., et al., 1999 : Lead-cobalt anodes for electrowinning of zinc from sulphate electrolytes, Hydrometallurgy, 52, pp. 223-230. https://doi.org/10.1016/S0304-386X(99)00005-5
  2. Nijjer, S., Thonstad, J., and Haarberg, G. M., 2000 : Oxidation of manganese(II) and reduction of manganese dioxide in sulfuric acid, Electrochimica Acta, 46, pp. 395-399. https://doi.org/10.1016/S0013-4686(00)00597-1
  3. Miller, G. M., 1995 : The problem of manganese and its effects on copper SX-EW operations. Proceedings of Copper 95, The Metallurgical Society of CIM, Toronto, ed Cooper, W.C., Dreisinger, D.B., Dutrizc, J.E., Hein, H and Ugarte, G. vol III, pp. 649-663.
  4. Yu, P. and O'Keefe, T. J., 2002 : Evaluation of lead anode reactions in acid sulfate electrolytes II. Manganese reactions. J. Electrochem. Soc., 149, pp. A558-A569. https://doi.org/10.1149/1.1464882
  5. Zhang, H. and Park, S. M., 1994 : Electrochemical oxidation of manganese(II) in $HClO_4$ solutions. J. Electrochem. Soc, 141, pp. 2422-2429. https://doi.org/10.1149/1.2055136
  6. Kelsall, G. H., Guerra, E., Li, G., and Bestetti, M., 2000 : Effects of manganese and chloride ions in zinc electrowinning reactors. Electrochemistry in Mineral and Metal Processing, R. Woods, F.M. Doyle, S. Licht. (ed), The Electrochemical Society, Toronto, Canada, pp. 350-361.
  7. Cifuentes, G., Cifuentes, L., and Crisostomo, G., 1998 : A lead-acid battery analogue to in situ anode degradation in copper electrometallurgy. Corrosion Science, 40, pp. 225-234. https://doi.org/10.1016/S0010-938X(97)00122-4
  8. Pourbaix, M. 1974 : Atlas of electrochemical equilibria in aqueous solutions. NACE International Cebelcor.
  9. Sharpe, T. F., 1975 : Low-rate cathodic linear sweep voltammetry (LSV) studies on anodized lead. J. Electrochem. Soc., 122, pp. 845-851. https://doi.org/10.1149/1.2134359
  10. Sharpe, T. F., 1977 : The behavior of lead alloys as PbO2 electrodes, J. Electrochem. Soc., 124, pp. 168-173. https://doi.org/10.1149/1.2133259
  11. Yu, P. and O'Keefe, T. J., 1999 : Evaluation of lead anode reactions in acid sulfate electrolytes I. Lead alloys with cobalt additives, J. Electrochem. Soc., 146, pp. 1361-1369. https://doi.org/10.1149/1.1391771
  12. Morrow, J. I. and Perlman, S., 1973 : A kinetic study of the permanganate-manganous ion reaction to form manganic ion in sulfuric acid media, Inorganic Chemistry, 12, pp. 2453-2455. https://doi.org/10.1021/ic50128a046
  13. Mahato, B. K., 1979 : The cyclic corrosion of the leadacid battery positive, J. Electrochem. Soc., 126, pp. 365-374. https://doi.org/10.1149/1.2129045
  14. Hrussanova, A., Mirkova, L., and Dobrev, Ts., 2001 : Anodic behaviour of $Pb-Co_3O_4$ composite coating in copper electrowinning, Hydrometallurgy, 60, pp. 199-213. https://doi.org/10.1016/S0304-386X(00)00190-0
  15. Pavlov, D. and Dinev, Z., 1980 : Mechanism of the electrochemical oxidation of lead to lead dioxide electrode in $H_2SO_4$ solution. J. Electrochem. Soc., 127, pp. 855-863. https://doi.org/10.1149/1.2129770