DOI QR코드

DOI QR Code

저농도 희토류 용액으로부터 PC88A를 이용한 중희토류의 용매추출 연구

Solvent Extraction of Heavy Rare Earth Elements Using PC88A from Synthesis Solution of Low Concentration Rare Earth Solution

  • 안낙균 (고등기술연구원 신소재공정센터) ;
  • 임병용 (고등기술연구원 신소재공정센터) ;
  • 이지은 (고등기술연구원 신소재공정센터) ;
  • 박재량 (고등기술연구원 신소재공정센터) ;
  • 이찬기 (고등기술연구원 신소재공정센터) ;
  • 박경수 (고등기술연구원 신소재공정센터)
  • Ahn, Nak-Kyoon (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Im, Byoungyong (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Lee, Jieun (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Park, Jae Ryang (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Lee, Chan-Gi (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Park, Kyung-Soo (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE))
  • 투고 : 2017.04.10
  • 심사 : 2017.07.10
  • 발행 : 2017.08.31

초록

본 연구에서는 저농도(약 1 ppm 이하)의 희토류가 함유되어 있는 산업폐수로부터 중희토류의 회수 가능성을 알아보기 위하여 PC88A를 이용한 중희토류 용매추출 거동을 확인하였다. 평형 pH, 추출제 농도, 추출 상비(A/O) 변화를 통해 PC88A에 의한 중희토류의 추출 거동을 확인하였고 $HNO_3$, HCl, $H_2SO_4$ 세 가지 무기산을 이용하여 탈거 거동을 확인하였다. 평형 pH 0에서 중희토류의 추출이 시작되었으며 평형 pH 1.0에서 중희토류의 추출이 95~100% 완료되었다. 모든 추출 조건에서 원자번호가 높은 물질부터 (Yb > Tm > Er > Dy > Nd > Pr > La) 우선적으로 추출되는 경향을 보였으며 추출 상비(A/O) 10/1일 때 Yb과 Tm이 최대로 농축되어 초기 농도 대비 각각 6배, 3배 증가하였다. 이 후 희토류의 탈거 거동을 확인하고자 희토류 원소가 추출된 유기상과 세가지 무기산을 각각 사용하여 비교하였고 $HNO_3$, $H_2SO_4$, HCl 순으로 최대 탈거율이 높게 나타났다.

The behavior on the solvent extraction of heavy rare earths (HRE) by using PC88A was confirmed to demonstrate the possibility of recovery on the HRE from industrial wastewater, which consist of low concentration rare earth. We verified the extraction behavior of the HRE through a change of equilibrium pH, extractant concentration and A/O ratio, and also confirmed the stripping behavior depending on the type of mineral acids. At equilibrium pH 1.0, extraction of rare earth (RE) was completed from 95% to 100%. In all extraction conditions, it tend to be extracted in order of high atomic number. When A/O ratio was 10/1, Yb and Tm were concentrated at the maximum and increased 6-fold and 3-fold compared to initial concentration, respectively. To confirm the stripping behavior of the RE, three mineral acids were applied to the organic phase and consequently rate of stripping was increased in order of $HNO_3$, $H_2SO_4$ and HCl.

키워드

참고문헌

  1. Kim, T. S. et al., 2014 : Present situation of rare earth industry, J. Kor. Inst. Met. & Mater., 27, pp. 8-16.
  2. Lee, J. Y. 2015 : Introduction of process for high purity rare earths and core materials in ICT industry, Ceramist, 18, pp. 41-47.
  3. Yang, L., Jeon, H. S., and Lee, M. S., 2016 : Solvent extraction of Pr and Nd from chloride solution by mixtures of acidic extractants and LIX 63, J. Kor. Inst. Met. & Mater, 54, pp. 592-597. https://doi.org/10.3365/KJMM.2016.54.8.592
  4. Banda, R., Jeon, H. S., and Lee, M. S., 2015 : Separation of Nd from mixed chloride solutions with Pr by extraction with saponified PC88A and scrubbing, J. of J. Ind. Eng. Chem., 21, pp. 436-442. https://doi.org/10.1016/j.jiec.2014.03.002
  5. Liu, Y., and Lee, M. S., 2016 : Regeneration of a binary mixture of Cyanex 272 and Alamine 336 for the solvent extraction of rare earths elements by treatment with sodium hydroxide solution, J. Mol. Liq., 219, pp. 411-416. https://doi.org/10.1016/j.molliq.2016.03.055
  6. Cho, Y. C. et al., 2016 : Solvent extraction of rare earth elements (La, Ce, Pr, Nd, Sm) from hydrochloric acid solutions using cyanex 572, J. of Korean Inst. of Resources Recycling, 25, pp. 50-57.
  7. Park, J. H., Jeon, H. S., and Lee, M. S., 2013 : Solvent extraction separation of Nd and Pr from chloride solution using PC88A and D2EHPA, J. of Korean Inst. of Resources Recycling, 22, pp. 35-42. https://doi.org/10.7844/kirr.2013.22.5.35
  8. Park, J. H., Jeon, H. S., and Lee, M. S., 2014 : Solvent extraction separation of Nd and Pr from chloride solution using organophosphorus acid extractants, J. of Korean Inst. of Resources Recycling, 23, pp. 37-45.
  9. Lee, G. S. et al., 2004 : Solvent extraction equilibria of Gd with PC88A from chloride solution, J. of Korean Inst. of Resources Recycling, 13, pp. 24-32.
  10. Kim, J. S. et al., 2012 : Studies on selection of solvent extractant system for the separation of trivalent Sm, Gd, Dy and Y from chloride solutions, Int. J. Miner. Process., 112-113, pp. 37-42. https://doi.org/10.1016/j.minpro.2012.07.004
  11. Yoon, H. S. et al., Solvent extraction, separation and recovery of dysprosium (Dy) and neodymium (Nd) from aqueous solutions: Waste recycling strategies for permanent magnet processing, Hydrometallurgy, 165, pp. 27-43.
  12. Lee, M. S. et al., 2005 : Solvent extraction of Sm from chloride solution with PC88A and saponified PC88A, J. Jpn. Inst. Met., 46(1), pp. 64-68.
  13. Lee, M. S. and Son, S. H., 2017 : Separation of light rare earth elements by solvent extraction with a mixture of cationic and tertiary amine, J. of Korean Inst. of Resources Recycling, 26, pp. 3-10.
  14. Jha, M. K. et al., 2016 : Review on hydrometallurgical recovery of rare earth metals, Hydrometallurgy, 165, pp. 2-26. https://doi.org/10.1016/j.hydromet.2016.01.035
  15. Kim, S. G. et al., 2002 : Separation Characteristics of Lanthanum and Cerium with Saponified PC-88A, J. Korean Soc. Miner. Energy Resour. Eng., 39(3), pp. 182-186.
  16. Yoo, H. S. 2003 : Separation technology trend of rare earth elements, kisti.
  17. Li, X. et al., 2011 : Selective solvent extraction of vanadium over iron from a stone coal/black shale acid leach solution by D2EHPA/TBP, Hydrometallurgy, 105(3- 4), pp. 359-363. https://doi.org/10.1016/j.hydromet.2010.10.006
  18. Quinn, J. E. et al., 2015 : Solvent extraction of rare earth elements using phosphonic/phosphinic acid mixtures, Hydrometallurgy, 157, pp. 298-305. https://doi.org/10.1016/j.hydromet.2015.09.005
  19. Lee, M. S. and Jeon, H. S., 2010 : Extractive metallurgy and separation technology of rare earth ores, J. of Korean Inst. of Resources Recycling, 19, pp. 27-35.
  20. Wang, J. et al., 2017 : Solvent extraction and separation of heavy rare earths from chloride media using nonsymmetric (2,3-dimethyltutyl)(2,4,4'-trimethylpentyl)phosphinic acid, Hydrometallurgy, 167, pp. 39-47. https://doi.org/10.1016/j.hydromet.2016.10.020
  21. Wang, Y. et al., 2017 : Process for the separation of thorium and rare earth elements from radioactive waste residues using Cyanex 572 as a new extractant, Hydrometallurgy, 169, pp. 158-164. https://doi.org/10.1016/j.hydromet.2017.01.005
  22. Yoon, H. S. et al., 2015 : Recovery process development for the rare earths from permanent magnet scraps leach liquors, J. Braz. Chem. Soc., 26.