References
- Kang, J. S., Choi, Y. H., Kwon, S. B., and Yu, Y. B., 2014. Assessment of Geosmin and 2-MIB removal using advanced water treatment process and nanofiltration process. KSWST Journal of Water Treatment, 22(5): 59-71.
- Park, J. A., Yang, B., Park, C., Choi, J. W., van Genuchten, C. M., and Lee, S. H., 2017. Oxidation of microcystin-LR by the Fenton process: kinetics, degradation intermediates, water quality and toxicity assessment. Chemical Engineering Journal, 309: 339-348. https://doi.org/10.1016/j.cej.2016.10.083
- Bae, B. U., and Kim, Y. I., 2003. Determination of optimum powdered activated carbon (PAC) dose for geosmin and 2-MIB removal. Journal of Korean Society of Environmental Engineers, 25(8): 955-962.
- Jun, D. Y., Lee, H. J., Hong, S., and Yoon, J., 2000. The removal and adsorption characteristics of 2-MIB and Geosmin using PAC. Korean Society of Environmental Engineers, 22(11): 2097-2104.
-
Fotiou, T., Triantis, T. M., Kaloudis, T., Pastrana- Martinez, L. M., Likodimos, V., Falaras, P., Silva, A. M. T., and Hiskia, A., 2013. Photocatalytic degradation of Microcystin-LR and off-odor compounds in water under UV-A and solar light with a nanostructured photocatalyst based on reduced graphene oxide-
$TiO_2$ composite. Identification of intermediate products. Industrial & Engineering Chemistry Research, 52: 13991-14000. https://doi.org/10.1021/ie400382r - Cha, C., Shin, S. R., Annabi, N., Dokmeci, M. R., and Khademhosseini, A., 2013. Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano, 7(4): 2891-2897. https://doi.org/10.1021/nn401196a
- Iijima, S., 1991. Helical microtubules of graphitic carbon. Nature, 354: 56-58. https://doi.org/10.1038/354056a0
- Zhang, B. T., Zheng, X., Li, H. F., and Lin, J. M., 2013. Application of carbon-based nanomaterials in sample preparation: a review. Analytica Chimica Acta, 784: 1-17. https://doi.org/10.1016/j.aca.2013.03.054
- Vidal, S., Marco-Martinez, J., Filippone, S., and Martin, N., 2017. Fullerenes for catalysis: metallofullerenes in hydrogen transfer reactions. Chemical Communications, 53: 4842-4844. https://doi.org/10.1039/C7CC01267E
- Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., 2004. Electric field effect in atomically thin carbon films. Science, 306: 666-669. https://doi.org/10.1126/science.1102896
- Gupta, V. K., and Saleh, T. A., 2013. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene - an overview. Environmental Science and Pollution Research, 20: 2828- 2843. https://doi.org/10.1007/s11356-013-1524-1
- Xin, X., Wang, M., Ge, X., Zhao, Q., Sun, S., and Jia, R., 2014. Highly efficient removal of geosmin and 2-methylisoborneol by carboxylated multi-walled carbon nanotubes. Monatshefte fur Chemie, 145: 747-754. https://doi.org/10.1007/s00706-013-1148-7
- Yan, H., Gong, A., He, H., Zhou, J., Wei, Y., and Lv, L., 2006. Adsorption of microcystins by carbon nanotubes. Chemosphere, 62: 142-148. https://doi.org/10.1016/j.chemosphere.2005.03.075
- Sinha, A., and Jana, N. R., 2015. Separation of microcystin-LR by cyclodextrin-functionalized magnetic composite of colloidal graphene and porous silica. ACS Applied Materials & Interfaces, 7: 9911-9919. https://doi.org/10.1021/acsami.5b02038
- Hu, X., Mu, L., Wen, J., and Zhou, Q., 2012. Immobilized smart RNA on graphene oxide nanosheets to specifically recognize and adsorb trace peptide toxins in drinking water. Journal of Hazardous Materials, 213-214: 387-392. https://doi.org/10.1016/j.jhazmat.2012.02.012
- Pavagadhi, S., Tang, A. L. L., Sathishkumar, M., Loh, K. P., and Balasubramanian, R., 2013. Removal of microcystin-LR and microcystin-RR by graphene oxide: adsorption and kinetic experiments. Water Research, 47: 4621-4629. https://doi.org/10.1016/j.watres.2013.04.033
-
Sampaio, M. J., Silva, C. G., Silva, A. M. T., Pastrana-Martinez, L. M., Han, C., Morales-Torres, S., Figueiredo, J. A., Dionysiou, D. D., and Faria, J. L., 2015. Carbon-based
$TiO_2$ materials for the degradation of microcystin-LA. Applied Catalysis B: Environmental, 170-171: 74-82. https://doi.org/10.1016/j.apcatb.2015.01.013