References
- A. Goldstein, L. Fink, A. Meitin, S. Bohadana, O. Lutenberg, G. Ravid, 2017. Applying machine learning on sensor data for irrigation recommendations: revealing the agronomist's tacit knowledge, Precision Agric., DOI 10.1007/s11119-017-9527-4.
- A. Gonzalez-Sanchez, J. Frausto-Solis, W. Ojeda-Bustamante, 2014. Predictive ability of machine learning methods for massive crop yield prediction, Spanish Journal of Agricultural Research 12(2): 313-328. https://doi.org/10.5424/sjar/2014122-4439
- G. Zhao, B. A. Bryan, D. King, Z. Luo, E. Wang, U. Bende-Michl, X. Song, Q. Yu, 2013. Large-scale, high-resolution agricultural systems modeling using a hybrid approach combining grid computing and parallel processing, Environmental Modelling & Software 41: 231-238. https://doi.org/10.1016/j.envsoft.2012.08.007
- National Academy of Sciences, National Academy of Engineering, and Institute of Medicine, 2005. Facilitating Interdisciplinary Research. Washington, DC: The National Academies Press. https://doi.org/10.17226/11153.
- Nature, 2015. Why interdisciplinary research matters, Special issue, 525(305): 291, doi: 10.1038/525305a.
- P. D. Vani, K. R. Rao, 2016. Measurement and Monitoring of Soil Moisture using Cloud IoT and Android System, Indian Journal of Science and Technology, 9(31): 1-8, DOI: 10.17485/ijst/2016/v9i31/95340