DOI QR코드

DOI QR Code

A Study on Stealth Design for Exterior Equipment Arrangement Considering the Multi-Bounce Effect

다중반사를 고려한 함정의 외부 탑재 장비 최적배치 연구

  • Hwang, Joon-Tae (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Hong, Suk-Yoon (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Kwon, Hyun-Wung (Department of Naval Architecture and Ocean Engineering, Koje College) ;
  • Kim, Jong-Chul (Naval System R&D Institute, Agency for Defense Development) ;
  • Song, Jee-Hun (Department of Naval Architecture and Ocean Engineering, Chonnam National University)
  • 황준태 (서울대학교 조선해양공학과) ;
  • 홍석윤 (서울대학교 조선해양공학과) ;
  • 권현웅 (거제대학교 조선해양공학과) ;
  • 김종철 (국방과학연구소) ;
  • 송지훈 (전남대학교 조선해양공학전공)
  • Received : 2017.09.20
  • Accepted : 2017.12.28
  • Published : 2017.12.31

Abstract

Multiple reflections on exterior equipment with complex shape on naval ships cause unexpectedly high Radar Cross Section (RCS) distributions, and the directions of reradiated electromagnetic waves are hard to predict. Therefore, the optimum arrangement of exterior equipments should be considered according to the Radar Absorbing Structure (RAS) method. In this paper, the optimum arrangement for exterior equipments was determined to reduce multiple reflections and RCS even with complex shapes. The sequential descending arrangement method was used to establish an optimum arrangement algorithm. An LCS-2 type model was selected for optimum exterior equipment arrangements. In order to reduce computational cost, RCS distributions and multiple reflection path analysis of exterior equipments was carried out to select exterior equipments for optimum arrangement, and an optimum arrangement was determined to find positions with minimum RCS values. Also, the RCS reduction effect was analyzed using detectable radar range.

함정 외부 탑재 장비의 복잡한 형상에 의해서 발생하는 다중반사는 경로를 예측하기 어렵고 높은 RCS(Radar Cross Section)의 원인이 된다. 따라서 함정의 외부 탑재 장비의 최적배치 설계가 RAS(Radar Absorbing Structure) 방법으로 고려되어야 한다. 본 논문에서는 함정 외부 탑재 장비에서 발생하는 다중반사와 RCS를 최소화하기 위하여 함정 외부 탑재 장비 최적배치를 수행하였다. 외부 탑재 장비 최적배치에 사용된 알고리즘은 순차적 내림차순 방법을 이용하였다. 함정 외부 탑재 장비 최적배치를 수행하기 위하여 LCS-2 type을 해석 모델로 선정하였다. 계산 비용을 줄이기 위해서 장비의 기여도 분석 및 다중반사 경로 분석 등을 통해 최적 배치를 수행할 장비를 선정하였고 최적배치를 통해 RCS가 최소가 되는 최적배치 위치를 도출하였다. 또한 RCS 변화에 따른 레이다의 탐지거리 변화율을 이용하여 RCS 감소효과를 분석 하였다.

Keywords

References

  1. Chang, Y. J.(2012), A Study on Minimizing Counter-Detection Probability of Warship based on RCS Simulation Method, MS. Dissertation, Kwangwoon Univ., 42-46
  2. Hwang, J. T., S. Y. Hong, H. W. Kwon, J. C. Kim and J. H. Song(2015), Analysis of Radar Cross Section for Naval Vessels with Metamaterials and Radar Absorbing Materials, Journal of the Korean Society of Marine Environment & Safety, Vol. 21, No. 6, pp. 737-743. https://doi.org/10.7837/kosomes.2015.21.6.737
  3. Kim, S. K., G. T. Lee and I. S. Seo(2011), Design of AEM FFS-Radom for Array Antenna, The journal of Korea Electro-magnetic Engineering Society Vol.22 No.12, 1180-1183
  4. Knott, E. F., J. F. Shaeffer and M. T. Tuley(1993), Radar Cross Section, 2nd Edition, Artech House, Boston.London, pp. 183-224.
  5. Kwon, H. W., S. Y. Hong, K. K. Lee, J. C. Lee, I. C. Na and J. H. Song(2014), Analysis of Radar Cross Section for Advanced Naval Vessels, Journal of the Korean Society of Marine Environment & Safety, Vol. 20, No. 5, pp. 593-600. https://doi.org/10.7837/kosomes.2014.20.5.593
  6. Park, T. Y.(2004), A study on RCS prediction code for battleship, MS. Dissertation, POSTECH, pp. 29-61.
  7. Stratton, J. A.(1941), Electromagnetic Theory, McGraw-Hill, New York, pp. 464-470.
  8. Suk, S. H.(2001), RCS Prediction of complex targets, MS. Dissertation, POSTECH, pp. 69-70.

Cited by

  1. Shape Optimization of an Integrated Mast for RCS Reduction of a Stealth Naval Vessel vol.11, pp.6, 2017, https://doi.org/10.3390/app11062819