DOI QR코드

DOI QR Code

A Review of Proximity Assessment Measurements According to Fairway Patterns and Ship Size

항로형태 및 선박크기에 따른 근접도 평가기법에 관한 고찰

  • Kim, Sung-Cheol (Graduate School, Mokpo National Maritime University) ;
  • Kwon, Yu-Min (Graduate School, Mokpo National Maritime University)
  • 김성철 (목포해양대학교 대학원) ;
  • 권유민 (목포해양대학교 대학원)
  • Received : 2017.09.20
  • Accepted : 2017.12.28
  • Published : 2017.12.31

Abstract

An acceptable proximity assessment collision probability is widely considered to be less than $10^{-4}$ in maritime traffic safety audit schemes. In the 1970s, Fujii, Macduff and colleagues introduced various models for collision probability of aberrancy in the community. Although existing studies ensured acceptable proximity collision probability, around $10^{-4}$, they were constrained by assumptions. A lack of support for the proximity probability criterion has been investigated in this study for practical use. The appropriate proximity probability for different size vessels in both straight and curved lanes has been analyzed based on GICOMS data. As a result, reasonable proximity collision probabilities were determined for various vessel traffic conditions. Accordingly, necessary improvements in the maritime traffic system have been suggested in consideration for various maritime traffic situations and conditions.

해상교통안전진단제도의 해상교통시스템 적정성 평가 항목 중 통항안전성 근접도 평가 기준은 충돌확률이 $1.0{\times}10^{-4}$ 미만일 경우에 선박의 안전 확보가 가능하다고 제시하고 있다. 1970년대 선박 충돌에 관해 Fujii 와 Macduff의 연구를 시작으로 많은 연구자와 연구기관에서 충돌확률 예측 모델을 제시하였다. 이 같은 다양한 연구에서 충돌확률은 $1.0{\times}10^{-4}$을 크게 벗어나지 않는 수준이지만, 대부분 가정된 상황을 기준으로 제시됨에 따라 다양한 형태의 실제 항로 기준에 적용하는데 근거가 부족한 문제가 있다. 이 연구는 직선항로와 곡선항로를 통항한 선박들의 GICOMS 데이터를 이용하여 선박의 크기별로 근접도 평가를 조사하였다. 이를 근거로 모든 선박에 일률적으로 적용되던 평가 기준을 선박의 크기별로 근접도 평가를 적용 하는 것이 보다 더 합리적이라 판단되어 항로 형태에 따른 선박 크기별 충돌확률을 제시하였다. 향후 보다 다양한 상황과 형태의 항로에서의 해상교통시스템 적정성 평가 기법에 대한 정확성 개선연구가 필요하다.

Keywords

References

  1. Bae, Y. G. and S. L. Lee(2012), Determination of Channel Width and Span Length for Offshore Bridge Considering the Ship Collision, www.yooshin.co.kr, pp. 73-87.
  2. Cho, B. I., D. H. Kim and Y. M. Oh(2010), Collision Fragility Analysis of Offshore Bridge by Ship, Journal of Korean Society of Coastal and Ocean Engineers, Vol. 22, No. 4, pp. 224-229.
  3. COWI(2008) Risk analysis for Sea traffic in the area around Bornholm. Danish Maritime Authority, Kongens Lyngby.
  4. Fujii, Y., H. Yamanouchi, and N. Mizuki(1974), II The probability of stranding, The Journal of Navigation, Vol. 27, No. 2, pp. 239-243. https://doi.org/10.1017/S0373463300025960
  5. Kim, I. C.(2016), A study on Adopting an Ex Post Facto Management System and Reforming the Maritime Traffic Safety Audit Scheme, Journal of the Korean Society of Marine Environment & Safety, Vol. 22, No. 7, pp. 807-813. https://doi.org/10.7837/kosomes.2016.22.7.807
  6. Macduff, T.(1974), The probability of vessel collisions. Ocean Industry, Vol. 9, No. 9.
  7. Ministry of Oceans and Fisheries(2017), Maritime Safety Audit Scheme Index of Enforcement, Ministry of Oceans and Fisheries Notification No. 2017-21(2017), pp. 28-33.
  8. Pedersen, P. T.(1995), Collision and grounding mechanics, Proceedings of WEMT, 95(1995), pp. 125-157.
  9. Ravn, E.(2012), A tool that makes the link between aids to navigation, traffic volume and the associated risk. Efficient, Safe and Sustainable Traffic at Sea. Valby: The Danish Maritime Safety Administration, Vol. 12, No. 4, pp. 231-238.
  10. Skourup, H., R. Forsberg, S. L. S. Sorensen, C. J. Andersen, U. Schafer, G. Liebsch, J. Ihde and U. Schirmer(2008), Strengthening the vertical reference in the southern baltic Sea by Airborne Gravimetry, Observing our Changing Earth: Proceedings of the 2007 IAG General Assembly, Perugia, Italy, July 2-13, 2007, pp. 133-135.
  11. Yim, J. B. and D. H. Kim(2010), Statistical Parameter Estimation to Calculate Collision Probability Between Mokpo Harbor Bridge and Passing Vessels, Journal of Navigation and Port Research, Vol. 34, No. 8, pp. 609-614. https://doi.org/10.5394/KINPR.2010.34.8.609

Cited by

  1. Validation of Statistical Analysis-based Aberrancy Probability Using Marine Simulations vol.24, pp.3, 2018, https://doi.org/10.7837/kosomes.2018.24.3.332
  2. An Improved Ship Collision Risk Evaluation Method for Korea Maritime Safety Audit Considering Traffic Flow Characteristics vol.7, pp.12, 2017, https://doi.org/10.3390/jmse7120448
  3. An Investigation of the Ship Safety Distance for Bridges across Waterways Based on Traffic Distribution vol.8, pp.5, 2017, https://doi.org/10.3390/jmse8050331