DOI QR코드

DOI QR Code

Red Ginseng Alters Lipid Metabolism through AMPK Activation in Liver and Adipose Tissues of High-Fat Diet-Fed Mice

홍삼 복합 추출물의 AMPK 활성화를 통한 고지혈증 개선

  • Jeong, Ha Jin (Department of Biomedical Sciences, Chonnam National University) ;
  • Oh, Seung Tack (Department of Biomedical Sciences, Chonnam National University) ;
  • Liu, Quan Feng (Department of Biomedical Sciences, Chonnam National University) ;
  • Choi, Yura (Department of Biomedical Sciences, Chonnam National University) ;
  • Lee, Seoungmi (Department of Biomedical Sciences, Chonnam National University) ;
  • Jeon, Songhee (Department of Biomedical Sciences, Chonnam National University)
  • 정하진 (전남대학교 의과대학 의과학과) ;
  • 오승택 (전남대학교 의과대학 의과학과) ;
  • 류천봉 (전남대학교 의과대학 의과학과) ;
  • 최유라 (전남대학교 의과대학 의과학과) ;
  • 이성미 (전남대학교 의과대학 의과학과) ;
  • 전송희 (전남대학교 의과대학 의과학과)
  • Received : 2017.05.26
  • Accepted : 2017.07.28
  • Published : 2017.08.31

Abstract

Hyperlipidemia is known as a glucose and lipid metabolism-related disorder that is increasing in incidence in modern society. Red ginseng (RG) is a natural herb candidate with a positive effect on regulation of cholesterol and lipids. To observe the effects of RG on regulation of lipids, cholesterol, glucose, and oxidative stress, we examined the in vitro and in vivo effects of Chamdahan RG on differentiated 3T3-L1 adipocytes and high-fat diet-fed mice. RG ($50{\mu}g/mL$) significantly inhibited lipid synthesis in 3T3-L1 cells. In addition, a low concentration of RG (880 mg/kg/d) resulted in the lowest total blood cholesterol level. Moreover, high density lipoprotein-cholesterol quantity increased in RG-treated groups, consequently lowering the cardiovascular risk factor and atherosclerosis index. Moreover, RG increased activity of AMP-activated protein kinase, as a regulator of lipid and cholesterol synthesis, in adipose and liver tissues. Cumulatively, this paper suggests that RG has a positive effect on reducing the amounts of cholesterol and lipids and may be a good candidate for treating hyperlipidemia.

당 및 지질 대사 조절의 이상으로 인한 대사성 질환 중의 하나인 고지혈증은 현대사회에서 급격하게 증가하고 있다. 이러한 문제를 해결하기 위하여 부작용이 적은 천연물을 사용하는 사례들이 급증하고 있는데, 특히 이 연구에서는 초미세 분말을 첨가한 홍삼을 이용하여 지방세포 및 쥐 혈액, 간, 그리고 지방조직에서 지질, 콜레스테롤, 당, 과산화 수치를 확인함으로써 홍삼의 효능을 관찰하였다. 세포 실험 결과, 특정한 홍삼 농도($50{\mu}g/mL$)에서 지질 형성을 미세하게 억제하고 있음을 알 수 있으며, 동물 실험에서도 마찬가지로 저농도의 홍삼을 처리하였을 때 혈중 총 콜레스테롤 수치가 가장 감소하였고 HDL-콜레스테롤 수치 또한 증가하는 것으로 밝혀졌으며, 이는 심혈관위험지수 및 동맥경화지수를 낮춰준다. 그뿐만 아니라 저농도 홍삼 식이법 시행군에서 지질대사 관련 단백질인 AMPK의 발현량이 증가하였는데, 이는 특정 농도의 홍삼이 AMPK 활성화를 높임으로써 지방 및 콜레스테롤 합성 억제를 돕는 것으로 판단된다. 따라서 본 연구는 홍삼이 대사성 질환인 고지혈증 치료 및 예방에 도움을 주는 천연물 후보임을 시사하는 바이다.

Keywords

References

  1. Lim S, Shin H, Song JH, Kwak SH, Kang SM, Yoon JW, Choi SH, Cho SI, Park KS, Lee HK, Jang HC, Koh KK. 2011. Increasing prevalence of metabolic syndrome in Korea: the Korean National Health and Nutrition Examination Survey for 1998-2007. Diabetes Care 34: 1323-1328. https://doi.org/10.2337/dc10-2109
  2. MHWK. 2003. Yearbook of health and welfare statistics. Report of the Ministry of Health and Welfare, Seoul, Korea. p 35.
  3. Shin MK, Han SH. 2002. Effects of methanol extracts from bamboo (Pseudosasa japonica Makino) leaves extracts on lipid metabolism in rats fed high fat and high cholesterol diet. Korean J Dietary Culture 17: 30-36.
  4. Moon SJ. 1996. Nutritional problems of Korean. Korean J Nutr 29: 371-380.
  5. Xia W, Sun C, Zhao Y, Wu L. 2011. Hypolipidemic and antioxidant activities of Sanchi (Radix Notoginseng) in rats fed with a high fat diet. Phytomedicine 18: 516-520. https://doi.org/10.1016/j.phymed.2010.09.007
  6. McKenney JM. 2001. Lipid management: tools for getting to the goal. Am J Manag Care 7: S299-S306.
  7. Miettinen TA. 2001. Cholesterol absorption inhibition: a strategy for cholesterol-lowering therapy. Int J Clin Pract 55: 710-716.
  8. Yokozawa T, Kobayashi T, Oura H, Kawashima Y. 1985. Studies on the mechanism of the hypoglycemic activity of ginsenoside-Rb2 in streptozotocin-diabetic rats. Chem Pharm Bull (Tokyo) 33: 869-872. https://doi.org/10.1248/cpb.33.869
  9. Joo CN, Koo JH, Baik TH. 1980. Biochemical study of some pharmacological effects of Panax ginseng C. A. Meyer. Korean Biochem J 13: 63-80.
  10. Yoon SH, Joo CN. 1993. Study on the preventive effect of ginsenosides against hypercholesterolemia and its mechanism. Korean J Ginseng Sci 17: 1-12.
  11. Kang BH, Koo JH, Joo CN. 1986. Effect of saponin fraction of Panax ginseng C.A. Meyer on blood serum lipoprotein distribution of cholesterol fed rabbits. Korean J Ginseng Sci 10: 114-121.
  12. Lee MS, Kim KJ, Kim D, Lee KE, Hwang JK. 2011. meso- Dihydroguaiaretic acid inhibits hepatic lipid accumulation by activating AMP-activated protein kinase in human HepG2 cells. Biol Pharm Bull 34: 1628-1630. https://doi.org/10.1248/bpb.34.1628
  13. Pu P, Gao DM, Mohamed S, Chen J, Zhang J, Zhou XY, Zhou NJ, Xie J, Jiang H. 2012. Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet. Arch Biochem Biophys 518: 61-70. https://doi.org/10.1016/j.abb.2011.11.026
  14. Reagan-Shaw S, Nihal M, Ahmad N. 2008. Dose translation from animal to human studies revisited. FASEB J 22: 659-661. https://doi.org/10.1096/fj.07-9574LSF
  15. Hagan MM, Rushing PA, Benoit SC, Woods SC, Seeley RJ. 2001. Opioid receptor involvement in the effect of AgRP-(83-132) on food intake and food selection. Am J Physiol Regul Integr Comp Physiol 280: R814-R821. https://doi.org/10.1152/ajpregu.2001.280.3.R814
  16. Stanley BG, Kyrkouli SE, Lampert S, Leibowitz SF. 1986. Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides 7: 1189-1192. https://doi.org/10.1016/0196-9781(86)90149-X
  17. Kang BH, Koo JH, Joo CN. 1986. Effect of saponin fraction of Panax ginseng C.A. Meyer on blood serum lipoprotein distribution of cholesterol fed rabbits. Korean J Ginseng Sci 10: 114-121.
  18. Yang RL, Shi YH, Hao G, Li W, Le GW. 2008. Increasing oxidative stress with progressive hyperlipidemia in human: Relation between malondialdehyde and atherogenic index. J Clin Biochem Nutr 43: 154-158. https://doi.org/10.3164/jcbn.2008044
  19. Yang R, Le G, Li A, Zheng J, Shi Y. 2006. Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet. Nutrition 22: 1185-1191. https://doi.org/10.1016/j.nut.2006.08.018
  20. Armstrong D, Browne R. 1994. The analysis of free radicals, lipid peroxides, antioxidant enzymes and compounds related to oxidative stress as applied to the clinical chemistry laboratory. Adv Exp Med Biol 366: 43-58.
  21. Tontonoz P, Hu E, Spiegelman BM. 1994. Stimulation of adipogenesis in fibroblasts by $PPAR{\gamma}2$, a lipid-activated transcription factor. Cell 79: 1147-1156. https://doi.org/10.1016/0092-8674(94)90006-X
  22. Wang X, Sato R, Brown MS, Hua X, Goldstein JL. 1994. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77: 53-62. https://doi.org/10.1016/0092-8674(94)90234-8
  23. Lin FT, Lane MD. 1994. CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc Natl Acad Sci U S A 91: 8757-8761. https://doi.org/10.1073/pnas.91.19.8757
  24. Hwang JT, Lee MS, Kim HJ, Sung MJ, Kim HY, Kim MS, Kwon DY. 2009. Antiobesity effect of ginsenoside Rg3 involves the AMPK and $PPAR-{\gamma}$ signal pathways. Phytother Res 23: 262-266. https://doi.org/10.1002/ptr.2606