DOI QR코드

DOI QR Code

Mesh Independent 3-D Modeling of Spot Welded Joints using Finite Elements with Embedded Strong Discontinuities

강한 불연속이 내장된 유한요소를 이용한 스폿 용접 접합의 망 독립적 삼차원 모델링

  • Kim, Jongheon (Advanced Infrastructure Research Team, Korea Railroad Research Institute)
  • 김종헌 (한국철도기술연구원 첨단인프라연구팀)
  • Received : 2017.06.15
  • Accepted : 2017.08.03
  • Published : 2017.08.31

Abstract

A spot welded joint is modeled using 3-D finite elements with embedded strong discontinuities. The spot weld is represented by a special cohesive law on the embedded discontinuity surface, instead of meshing its geometry. This strategy naturally eliminates the need of adaptive FEM meshes fitting the local geometry of the spot weld. Mesh independent solutions are guaranteed by explicitly modeling the detailed shape of the spot weld, which is in contrast with the exiting approach using point constraints for the spot weld.

스폿 용접 접합의 삼차원 모델링을 위하여 강한 불연속이 내장된 유한요소를 사용하였다. 스폿 용접의 기하학적 형상을 유한요소망 대신 요소에 내장된 불연속 면에서의 특수한 응집 법칙을 이용하여 표현하였다. 이를 통하여 기존의 적응적 유한요소망을 이용하는 접근법과 달리 스폿 용접의 국부적인 형상에 독립적인 유한요소망을 구성할 수 있다. 또한, 스폿 용접의 형상을 명시적으로 고려하여 모델링함으로써 기존의 점 구속조건을 이용하는 접근법과 달리 망 독립적인 해를 얻을 수 있다.

Keywords

References

  1. Armero, F., Kim, J. (2012) Three-dimensional Finite Elements with Embedded Strong Discontinuities to Model Material Failure in the Infinitesimal Range, Int. J. Numer. Meth. Eng., 91, pp.1291-1330. https://doi.org/10.1002/nme.4314
  2. Barenblatt, G.I. (1962) The Mathematical Theory of Equilibrium Cracks in Brittle Fracture, Adv. Appl. Mech., 7, pp.55-129.
  3. Dvorkin, E.N., Cuitino, A.M., Goia, G. (1990) Finite Elements with Displacement Interpolated Embedded Localization Lines Insensitive to Mesh Size and Distortions, Int. J. Numer. Meth. Eng., 30, pp.541-564. https://doi.org/10.1002/nme.1620300311
  4. Frost, N.E., Dugdale, D.S. (1958) The Propagation of Fatigue Crack in Sheet Specimens, J. Mech. & Phys. Solids, 6, pp.91-110.
  5. Fries, T.P., Belytschko, T. (2010) The Generalized/ Extended Finite Element Method: An Overview of the Method and Its Applications, Int. J. Numer. Meth. Eng., 84, pp.253-304.
  6. Jin, Z.H., Paulino, G.H., Dodds, R.H. (2003) Cohesive Fracture Modeling of Elastic-Plastic Crack Growth in Functionally Graded Materials, Eng. Fract. Mech., 70, pp.1885-1912. https://doi.org/10.1016/S0013-7944(03)00130-9
  7. Jirasek, M. (2000) Comparative Study on Finite Elements with Embedded Discontinuities, Comput. Meth. Appl. Mech. & Eng., 188, pp.307-330. https://doi.org/10.1016/S0045-7825(99)00154-1
  8. Kim, J., Armero, F. (2017) Three-dimensional Finite Elements with Embedded Strong Discontinuities for the Analysis of Solids at Failure in the Finite Deformation Range, Comput. Meth. Appl. Mech. & Eng., 317, pp.890-926. https://doi.org/10.1016/j.cma.2016.12.038
  9. Needleman, A. (1987) A Continuum Model for Void Nucleation by Inclusion Debonding, J. Appl. Mech., 54, pp.525-531. https://doi.org/10.1115/1.3173064
  10. Sobotka, J.C., Oral, A., Culler, A.J. Towards a Coupled Loads-Response-Life Prediction Framework for Hypersonic Structures in Combined Extreme Environments, 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference Boston, Massachusetts, USA, April 8-11, 2013.
  11. Szabo, B., Babuska, I. (1991) Finite Element Analysis, John Wiley & Son, Inc.
  12. Turon, A., Davila, C.G., Camanho, P.P., Costa, J. (2007) An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models, Eng. Fract. Mech., 74, pp.1665-1682. https://doi.org/10.1016/j.engfracmech.2006.08.025