DOI QR코드

DOI QR Code

Overview of Arterial Spin Labeling Perfusion MRI

동맥스핀표지 관류 자기공명영상의 개요

  • Kang, Sung-Jin (Dept. of Radiology, Soonchunhyang University Bucheon Hospital) ;
  • Han, Man-Seok (Dept. of Radilogical Science, Kangwon National University)
  • 강성진 (순천향대학교 부천병원 영상의학과) ;
  • 한만석 (강원대학교 방사선과)
  • Received : 2017.06.15
  • Accepted : 2017.08.04
  • Published : 2017.08.31

Abstract

The arterial spin labeling (ASL) is a magnetic resonance imaging (MRI) method that can evaluate tissue perfusion using blood in the body. The characteristic of non-invasive examinations without contrast agents and the quantitative measurement of perfusion volume is possible, which are increasingly being used for clinical and research purposes. Up to the present, The ASL method has lower SNR than the perfusion imaging method using contrast agent and because optimization of various parameter in the imaging process is difficult, Which may result in measurement errors. To improve this, ASL methods using various technologies are introduced. This paper briefly introduces the outline of ASL, its features in imaging process, various techniques, and clinical application.

동맥스핀표지 기법(ASL)은 체내의 혈액을 이용하여 조직의 관류상태를 평가할 수 있는 자기공명영상 방법이다. 조영제를 사용하지 않는 비침습적 검사 특성과 정량적인 관류량의 측정이 가능하여 임상이나 연구목적으로 이용 빈도가 증가하고 있다. 아직까지는 ASL 방법이 조영제를 이용한 관류영상 방법에 비해 낮은 SNR과 영상화 과정에서의 여러 가지 변수의 최적화 과정이 어렵기 때문에 이로 인한 측정오차가 발생할 수 있다. 이를 개선하기 위해 다양한 기술을 적용한 ASL 방법들이 소개되고 있다. 본 논문은 ASL의 개요와 영상화 과정에서의 특징 및 다양한 기술, 임상적 적용에 대해 간단히 소개한다.

Keywords

References

  1. E. L. Barbier, L. Lamalle, and M. Decorps, J. Magn. Reson. Imaging 13, 496 (2001). https://doi.org/10.1002/jmri.1073
  2. G. G. Brown, C. Clark, and T. T. Liu, J. Int. Neuropsychol. Soc. 13, 526 (2007).
  3. B. R. Rosen, J. W. Belliveau, J. M. Vevea, and T. J. Brady, Magn. Reson. Med. 14, 249 (1990). https://doi.org/10.1002/mrm.1910140211
  4. A. R. Deibler, J. M. Pollock, R. A. Kraft, H. Tan, J. H. Burdette, and J. A. Maldjian, Am. J. Neuroradiol. 29, 1228 (2008). https://doi.org/10.3174/ajnr.A1030
  5. R. L. Wolf and J. A. Detre, Neurotherapeutics 4, 346 (2007). https://doi.org/10.1016/j.nurt.2007.04.005
  6. J. A. Detre, J. S. Leigh, D. S. Williams, and A. P. Koretsky, Magn. Reson. Med. 23, 37 (1992). https://doi.org/10.1002/mrm.1910230106
  7. N. S. Hartkamp, M. J. P. van Osch, J. Kappelle, and R. P. Bokkers, Curr. Opin. Neurol. 27, 42 (2014). https://doi.org/10.1097/WCO.0000000000000051
  8. J. A. Detre, W. Zhang, D. A. Roberts, A. C. Silva, D. S. Williams, D. J. Grandis, A. P. Koretsky, and J. S. Leigh, NMR Biomed. 7, 75 (1994). https://doi.org/10.1002/nbm.1940070112
  9. W. M. Luh, E. C. Wong, P. A. Bandettini, and J. S. Hyde, Magn. Reson. Med. 41, 1246 (1999). https://doi.org/10.1002/(SICI)1522-2594(199906)41:6<1246::AID-MRM22>3.0.CO;2-N
  10. H. Lu, C. Clingman, X. Golay, and P. C. M. van Zijl, Magn. Reson. Med. 52, 679 (2004). https://doi.org/10.1002/mrm.20178
  11. M. J. Silvennoinen, M. I. Kettunen, and R. A. Kauppinen, Magn. Reson. Med. 49, 568 (2003). https://doi.org/10.1002/mrm.10370
  12. A. I. Zhernovoi and L. M. Sharshina, Med. Tekh. 6, 33 (1997).
  13. R. B. Buxton, J. Magn. Reson. Imaging 22, 723 (2005). https://doi.org/10.1002/jmri.20462
  14. E. T. Petersen, T. Lim, and X. Golay, Magn. Reson. Med. 55, 219 (2006). https://doi.org/10.1002/mrm.20784
  15. D. C. Alsop and J. A. Detre, Radiology 208, 410 (1998). https://doi.org/10.1148/radiology.208.2.9680569
  16. A. M. Campbell and C. Beaulieu, J. Magn. Reson. Imaging 25, 215 (2007).
  17. R. R. Edelman and Q. Chen, Magn. Reson. Med. 40, 800 (1998). https://doi.org/10.1002/mrm.1910400603
  18. X. Golay, M. Stuber, K. P. Pruessmann, D. Meier, and P. Boesiger, J. Magn. Reson. Imaging 9, 454 (1999). https://doi.org/10.1002/(SICI)1522-2586(199903)9:3<454::AID-JMRI14>3.0.CO;2-B
  19. S. G. Kim and N. V. Tsekos, Magn. Reson. Med. 37, 425 (1997). https://doi.org/10.1002/mrm.1910370321
  20. K. K. Kwong, D. A. Chesler, R. M. Weisskoff, K. M. Donahue, T. L. Davis, L. Ostergaard, T. A. Campbell, and B. R. Rosen, Magn. Reson. Med. 34, 878 (1995). https://doi.org/10.1002/mrm.1910340613
  21. E. C. Wong, R. B. Buxton, and L. R. Frank, NMR Biomed. 10, 237 (1997). https://doi.org/10.1002/(SICI)1099-1492(199706/08)10:4/5<237::AID-NBM475>3.0.CO;2-X
  22. E. C. Wong, R. B. Buxton, and L. R. Frank, Magn. Reson. Med. 39, 702 (1998). https://doi.org/10.1002/mrm.1910390506
  23. D. C. Alsop and J. A. Detre, J. Cereb. Blood Flow Metab. 16, 1236 (1996). https://doi.org/10.1097/00004647-199611000-00019
  24. E. C. Wong, R. B. Buxton, and L. R. Frank, Magn. Reson. Med. 40, 348 (1998). https://doi.org/10.1002/mrm.1910400303
  25. S. A. Amukotuwa, C. Yu, and G. Zaharchuk, J. Magn. Reson. Imaging 43, 11 (2016). https://doi.org/10.1002/jmri.24873
  26. Y. Jung, E. C. Wong, and T. T. Liu, Magn. Reson. Med. 64, 799 (2010). https://doi.org/10.1002/mrm.22465
  27. W. Dai, D. Garcia, C. de Bazelaire, and D. C. Alsop, Magn. Reson. Med. 60, 1488 (2008). https://doi.org/10.1002/mrm.21790
  28. G. H. Jahng, G. B. Matson, M. W. Weiner, and N. Schuff, Proc. Int. Soc. Magn. Reson. Med. 14, 3433 (2006).
  29. D. M. Garcia, C. de Bazelaire, and D. C. Alsop, Proc. Int. Soc. Magn. Reson. Med. 13, 37 (2005).
  30. E. C. Wong, M. Cronin, W. C. Wu, B. Inglis, L. R. Frank, and T. T. Liu, Magn. Reson. Med. 55, 1334 (2006). https://doi.org/10.1002/mrm.20906
  31. G. Duhamel, C. de Bazelaire, and D. C. Alsop, Magn. Reson. Med. 50, 145 (2003). https://doi.org/10.1002/mrm.10510
  32. N. S. Hartkamp, E. T. Petersen, J. B. De Vis, R. P. Bokkers, and J. Hendrikse, NMR Biomed. 26, 901 (2013). https://doi.org/10.1002/nbm.2836
  33. P. J. van Laar, J. van der Grond, and J. Hendrikse, Radiology 246, 354 (2008). https://doi.org/10.1148/radiol.2462061775
  34. J. Hendrikse, J. van der Grond, H. Lu, P. C. van Zijl, and X. Golay, Stroke 35, 882 (2004). https://doi.org/10.1161/01.STR.0000120312.26163.EC
  35. N. P. Davies and P. Jezzard, Magn. Reson. Med. 49, 1133 (2003). https://doi.org/10.1002/mrm.10475
  36. Z. B. Rodgers, J. A. Detre, and F. W. Wehrli, J. Cereb. Blood Flow Metab. 36, 1165 (2016). https://doi.org/10.1177/0271678X16643090
  37. P. Liu, H. Huang, N. Rollins, L. F. Chalak, T. Jeon, C. Halovanic, and H. Lu, NMR Biomed. 27, 332 (2014). https://doi.org/10.1002/nbm.3067
  38. D. A. Yablonskiy, A. L. Sukstanskii, and X. He, NMR Biomed. 26, 963 (2013). https://doi.org/10.1002/nbm.2839
  39. T. T. Liu and E. C. Wong, Neuroimage 24, 207 (2005). https://doi.org/10.1016/j.neuroimage.2004.09.047
  40. R. D. Hoge, J. Atkinson, B. Gill, G. R. Crelier, S. Marrett, and G. B. Pike, Magn. Reson. Med. 42, 849 (1999). https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<849::AID-MRM4>3.0.CO;2-Z
  41. M. Wintermark, M. Sesay, E. Barbier, K. Borbely, W. P. Dillon, J. D. Eastwood, T. C. Glenn, C. B. Grandin, S. Pedraza, J. F. Soustiel, T. Nariai, G. Zaharchuk, J. M. Caille, V. Dousset, and H. Yonas, Stroke 36, 83 (2005). https://doi.org/10.1161/01.STR.0000177884.72657.8b
  42. J. M. Pollock, H. Tan, R. A. Kraft, C. T. Whitlow, J. H. Burdette, and J. A. Maldjian, Magn. Reson. Imaging Clin. N. Am. 17, 315 (2009). https://doi.org/10.1016/j.mric.2009.01.008
  43. M. A. Fernandez-Seara, Z. Wang, J. Wang, H. Y. Rao, M. Guenther, D. A. Feinberg, and J. A. Detre, Magn. Reson. Med. 54, 1241 (2005). https://doi.org/10.1002/mrm.20674
  44. Z. Wang, J. Wang, T. J. Connick, G. S. Wetmore, and J. A. Detre, Magn. Reson. Med. 54, 732 (2005). https://doi.org/10.1002/mrm.20574
  45. J. C. Ferre, J. Petr, E. Bannier, C. Barillot, and J. Y. Gauvrit, J. Magn. Reson. Imaging 35, 1233 (2012). https://doi.org/10.1002/jmri.23586
  46. J. A. Chalela, D. C. Alsop, J. B. Gonzalez-Atavales, J. A. Maldjian, S. E. Kasner, and J. A. Detre, Stroke 31, 680 (2000). https://doi.org/10.1161/01.STR.31.3.680
  47. B. Siewert, G. Schlaug, R. R. Edelman, and S. Warach, Neurology 48, 673 (1997). https://doi.org/10.1212/WNL.48.3.673
  48. T. Tourdias, S. Rodrigo, C. Oppenheim, O. Naggara, P. Varlet, S. Amoussa, G. Calmon, F. X. Roux, and J. F. Meder, J. Neuroradiol. 35, 79 (2008). https://doi.org/10.1016/j.neurad.2007.11.007
  49. C. Warmuth, M. Gunther, and C. Zimmer, Radiology 228, 523 (2003). https://doi.org/10.1148/radiol.2282020409
  50. Y. Ozsunar, M. E. Mullins, K. Kwong, F. H. Hochberg, C. Ament, P. W. Schaefer, R. G. Gonzalez, and M. H. Lev, Acad. Radiol. 17, 282 (2010). https://doi.org/10.1016/j.acra.2009.10.024
  51. M. A. Weber, C. Thilmann, M. P. Lichy, M. Gunther, S. Delorme, I. Zuna, A. Bongers, L. R. Schad, J. Debus, H. U. Kauczor, M. Essig, and H. P. Schlemmer, Invest. Radiol. 39, 277 (2004). https://doi.org/10.1097/01.rli.0000119195.50515.04
  52. L. L. Chao, S. T. Buckley, J. Kornak, N. Schuff, C. Madison, K. Yaffe, B. L. Miller, J. H. Kramer, and M. W. Weiner, Alzheimer Dis. Assoc. Disord. 24, 19 (2010). https://doi.org/10.1097/WAD.0b013e3181b4f736
  53. A. T. Du, G. H. Jahng, S. Hayasaka, J. H. Kramer, H. J. Rosen, M. L. Gorno-Tempini, K. P. Rankin, B. L. Miller, M. W. Weiner, and N. Schuff, Neurology 67, 1215 (2006). https://doi.org/10.1212/01.wnl.0000238163.71349.78
  54. N. A. Johnson, G. H. Jahng, M. W. Weiner, B. L. Miller, H. C. Chui, W. J. Jagust, M. L. Gorno-Tempini, and N. Schuff, Radiology 234, 851 (2005). https://doi.org/10.1148/radiol.2343040197
  55. D. C. Alsop, J. A. Detre, and M. Grossman, Ann. Neurol. 47, 93 (2000). https://doi.org/10.1002/1531-8249(200001)47:1<93::AID-ANA15>3.0.CO;2-8
  56. T. A. Sandson, M. O'Connor, R. A. Sperling, R. R. Edelman, and S. Warach, Neurology 47, 1339 (1996). https://doi.org/10.1212/WNL.47.5.1339
  57. R. L. Wolf, J. Wang, J. A. Detre, E. L. Zager, and R. W. Hurst, Am. J. Neuroradiol. 29, 681 (2008). https://doi.org/10.3174/ajnr.A0901
  58. R. L. Wolf, D. C. Alsop, I. Levy-Reis, P. T. Meyer, J. A. Maldjian, J. Gonzalez-Atavales, J. A. French, A. Alavi, and J. A. Detre, Am. J. Neuroradiol. 22, 1334 (2001).
  59. H. L. Liu, P. Kochunov, J. Hou, Y. Pu, S. Mahankali, C. M. Feng, S. H. Yee, Y. L. Wan, P. T. Fox, and J. H. Gao, Magn. Reson. Med. 45, 431 (2001). https://doi.org/10.1002/1522-2594(200103)45:3<431::AID-MRM1056>3.0.CO;2-E