DOI QR코드

DOI QR Code

Crystal Structure and Functional Characterization of a Cytochrome P450 (BaCYP106A2) from Bacillus sp. PAMC 23377

  • Kim, Ki-Hwa (Department of Life Science and Biochemical Engineering, Sunmoon University) ;
  • Lee, Chang Woo (Unit of Polar Genomics, Korea Polar Research Institute) ;
  • Dangi, Bikash (Department of Life Science and Biochemical Engineering, Sunmoon University) ;
  • Park, Sun-Ha (Unit of Polar Genomics, Korea Polar Research Institute) ;
  • Park, Hyun (Unit of Polar Genomics, Korea Polar Research Institute) ;
  • Oh, Tae-Jin (Department of Life Science and Biochemical Engineering, Sunmoon University) ;
  • Lee, Jun Hyuck (Unit of Polar Genomics, Korea Polar Research Institute)
  • Received : 2017.06.07
  • Accepted : 2017.06.19
  • Published : 2017.08.28

Abstract

Bacterial cytochrome P450 (CYP) steroid hydroxylases are effectively useful in the pharmaceutical industry for introducing hydroxyl groups to a wide range of steroids. We found a putative CYP steroid hydroxylase (BaCYP106A2) from the bacterium Bacillus sp. PAMC 23377 isolated from Kara Sea of the Arctic Ocean, showing 94% sequence similarity with BmCYP106A2 (Bacillus megaterium ATCC 13368). In this study, soluble BaCYP106A2 was overexpressed to evaluate its substrate-binding activity. The substrate affinity ($K_d$ value) to 4-androstenedione was $387{\pm}37{\mu}M$. Moreover, the crystal structure of BaCYP106A2 was determined at $2.7{\AA}$ resolution. Structural analysis suggested that the ${\alpha}8-{\alpha}9$ loop region of BaCYP106A2 is intrinsically mobile and might be important for initial ligand binding. The hydroxyl activity of BaCYP106A2 was identified using in vitro enzyme assays. Its activity was confirmed with two kinds of steroid substrates, 4-androstenedione and nandrolone, using chromatography and mass spectrometry methods. The main products were mono-hydroxylated compounds with high conversion yields. This is the second study on the structure of CYP106A steroid hydroxylases, and should contribute new insight into the interactions of bacterial CYP106A with steroid substrates, providing baseline data for studying the CYP106A steroid hydroxylase from the structural and enzymatic perspectives.

Keywords

References

  1. Bernhardt R. 1996. Cytochrome P450: structure, function, and generation of reactive oxygen species. Rev. Physiol. Biochem. Pharmacol. 127: 137-221.
  2. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, et al. 1996. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6: 1-42. https://doi.org/10.1097/00008571-199602000-00002
  3. Urlacher VB, Eiben S. 2006. Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol. 24: 324-330. https://doi.org/10.1016/j.tibtech.2006.05.002
  4. Milhim M, Gerber A, Neunzig J, Hannemann F, Bernhardt R. 2016. A novel NADPH-dependent flavoprotein reductase from Bacillus megaterium acts as an efficient cytochrome P450 reductase. J. Biotechnol. 231: 83-94. https://doi.org/10.1016/j.jbiotec.2016.05.035
  5. Ortiz de Montellano PR. 2005. Cytochrome P450 Structure, Mechanism, and Biochemistry, 3rd Ed. Kluwer Academic/ Plenum Publishers, New York, USA.
  6. Zhang A, Zhang T, Hall EA, Hutchinson S, Cryle MJ, Wong LL, et al. 2015. The crystal structure of the versatile cytochrome P450 enzyme CYP109B1 Bacillus subtilis. Mol. Biosyst. 11: 869-881. https://doi.org/10.1039/C4MB00665H
  7. Holland HL. 1999. Recent advances in applied and mechanistic aspects of the enzymatic hydroxylation of steroids by whole-cell biocatalysts. Steroids 64: 178-186. https://doi.org/10.1016/S0039-128X(98)00085-3
  8. Bureik M, Lisurek M, Bernhardt R. 2002. The human steroid hydroxlases CYP1B1 and CYP11B2. Biol. Chem. 383: 1537-1551.
  9. Lee GY, Kim DH, Kim D, Ahn T, Yun CH. 2015. Functional characterization of steroid hydroxylase CYP106A1 derived from Bacillus megaterium. Arch. Pharm. Res. 38: 98-107. https://doi.org/10.1007/s12272-014-0366-9
  10. Berg A, Gustafsson JA, Ingelman-Sundberg M. 1976. Characterization of a cytochrome P-450-dependent steroid hydroxylase system present in Bacillus megaterium. J. Biol. Chem. 251: 2831-2838.
  11. Jozwik IK, Kiss FM, Gricman L, Abdulmughni A, Brill E, Zapp J, et al. 2016. Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from Bacillus megaterium. FEBS J. 283: 4128-4148. https://doi.org/10.1111/febs.13911
  12. Makino T, Katsuyama Y, Otomatsu T, Misawa N, Ohnishi Y. 2014. Regio-and stereospecific hydroxylation of various steroids at the 16${\alpha}$ position of the D ring by the Streptomyces griseus cytochrome P450 CYP154C3. Appl. Environ. Microbiol. 80: 1371-1379. https://doi.org/10.1128/AEM.03504-13
  13. Bracco P, Janssen DB, Schallmey A. 2013. Selective steroid oxyfunctionalisation by CYP154C5, a bacterial cytochrome P450. Microb. Cell Fact. 12: 95. https://doi.org/10.1186/1475-2859-12-95
  14. Khatri Y, Ringle M, Lisurek M, von Kries JP, Zapp J, Bernhardt R. 2016. Substrate hunting for the myxobacterial CYP260A1 revealed new 1${\alpha}$-hydroxylated products from C-19 steroids. Chembiochem 17: 90-101. https://doi.org/10.1002/cbic.201500420
  15. Salamanca-Pinzon SG, Khatri Y, Carius Y, Keller L, Muller R, Lancaster CR, et al. 2016. Structure-function analysis for the hydroxylation of ${\Delta}4$ C21-steroids by the myxobacterial CYP260B1. FEBS Lett. 590: 1838-1851. https://doi.org/10.1002/1873-3468.12217
  16. Kiss FM, Schmitz D, Zapp J, Dier TK, Volmer DA, Bernhardt R. 2015. Comparison of CYP106A1 and CYP106A2 from Bacillus megaterium-identification of a novel 11-oxidase activity. Appl. Microbiol. Biotechnol. 99: 8495-8514. https://doi.org/10.1007/s00253-015-6563-8
  17. Nguyen KT, Virus C, Gunnewich N, Hannemann F, Bernhardt R. 2012. Changing the regioselectivity of a P450 from C15 to C11 hydroxylation of progesterone. Chembiochem 13: 1161-1166. https://doi.org/10.1002/cbic.201100811
  18. Nikolaus J, Nguyen KT, Virus C, Riehm JL, Hutter M, Bernhardt R. 2017. Engineering of CYP106A2 for steroid 9${\alpha}$-and 6${\beta}$-hydroxylation. Steroids 120: 41-48. https://doi.org/10.1016/j.steroids.2017.01.005
  19. Janocha S, Carius Y, Hutter M, Lancaster CR, Bernhardt R. 2016. Crystal structure of CYP106A2 in substrate-free and substrate-bound form. Chembiochem 17: 852-860. https://doi.org/10.1002/cbic.201500524
  20. Omura T, Sato R. 1964. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239: 2370-2378.
  21. Johnston JB, Ouellet H, Ortiz de Montellano PR. 2010. Functional redundancy of steroid C26-monooxygenase activity in Mycobacterium tuberculosis revealed by biochemical and genetic analyses. J. Biol. Chem. 285: 36352-36360. https://doi.org/10.1074/jbc.M110.161117
  22. Minor W, Otwinowski Z. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326.
  23. Vagin A, Teplyakov A. 1997. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30: 1022-1025. https://doi.org/10.1107/S0021889897006766
  24. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. 2011. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67: 235-242. https://doi.org/10.1107/S0907444910045749
  25. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67: 355-367. https://doi.org/10.1107/S0907444911001314
  26. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, et al. 2010. PHENIX: a comprehensive pythonbased system for macromolecular structure solution. Acta Crystallogr. D 66: 213-221.
  27. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66: 12-21. https://doi.org/10.1107/S0907444909042073
  28. DeLano WL. 2002. The PyMOL molecular graphics system. CCP4 Newsletter on Protein Crystallography 40: 82-92.
  29. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. 2006. The Protein Data Bank, 1999, pp. 675-684. International Tables for Crystallography, Vol. F. John Wiley & Sons, IN.
  30. Rauschenbach R, Isernhagen M, Noeske-Jungblut C, Boidol W, Siewert G. 1993. Cloning sequencing and expression of the gene for cytochrome P450meg, the steroid-15 betamonooxygenase from Bacillus megaterium ATCC 13368. Mol. Gen. Genet. 241: 170-176.
  31. Lee CW, Lee JH, Rimal H, Park H, Lee JH, Oh TJ. 2016. Crystal structure of cytochrome P450 (CYP105P2) from Streptomyces peucetius and its conformational changes in response to substrate binding. Int. J. Mol. Sci. 17: 813. https://doi.org/10.3390/ijms17060813
  32. Lee CW, Yu SC, Lee JH, Park SH, Park H, Oh TJ, et al. 2016. Crystal structure of a putative cytochrome P450 alkane hydroxylase (CYP153D17) from Sphingomonas sp. PAMC 26605 and its conformational substrate binding. Int. J. Mol. Sci. 17: 2067. https://doi.org/10.3390/ijms17122067
  33. Schenkman JB, Sligar SG, Cinti DL. 1981. Substrate interaction with cytochrome P-450. Pharmacol. Ther. 12: 43-71. https://doi.org/10.1016/0163-7258(81)90075-9
  34. Brill E. 2013. Identifizierung und charakterisierung neuer cytochrom P450 systeme aus Bacillus megaterium DSM319 (Doctoral dissertation).
  35. Schmitz D, Zapp J, Bernhardt R. 2014. Steroid conversion with CYP106A2-production of pharmaceutically interesting DHEA metabolites. Microb. Cell Fact. 13: 81. https://doi.org/10.1186/1475-2859-13-81
  36. Holm L. 2010. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38: W545-W549. https://doi.org/10.1093/nar/gkq366
  37. Savino C, Montemiglio LC, Sciara G, Miele AE, Kendrew SG, Jemth P, et al. 2009. Investigating the structural plasticity of a cytochrome P450: three-dimensional structures of P450 EryK and binding to its physiological substrate. J. Biol. Chem. 284: 29170-29179. https://doi.org/10.1074/jbc.M109.003590
  38. Zhang A, Zhang T, Hall EA, Hutchinson S, Cryle MJ, Wong LL, et al. 2015. The crystal structure of the versatile cytochrome P450 enzyme CYP109B1 from Bacillus subtilis. Mol. Biosyst. 11: 869-881. https://doi.org/10.1039/C4MB00665H
  39. Montemiglio LC, Parisi G, Scaglione A, Sciara G, Savino C, Vallone B. 2016. Functional analysis and crystallographic structure of clotrimazole bound OleP, a cytochrome P450 epoxidase from Streptomyces antibioticus involved in oleandomycin biosynthesis. Biochim. Biophys. Acta 1860: 465-475. https://doi.org/10.1016/j.bbagen.2015.10.009
  40. Li S, Tietz DR, Rutaganira FU, Kells PM, Anzai Y, Kato F, et al. 2012. Substrate recognition by the multifunctional cytochrome P450 MycG in mycinamicin hydroxylation and epoxidation reactions. J. Biol. Chem. 287: 37880-37890. https://doi.org/10.1074/jbc.M112.410340
  41. Yasutake Y, Fujii Y, Nishioka T, Cheon WK, Arisawa A, Tamura T. 2010. Structural evidence for enhancement of sequential vitamin D3 hydroxylation activities by directed evolution of cytochrome P450 vitamin D3 hydroxylase. J. Biol. Chem. 285: 31193-31201. https://doi.org/10.1074/jbc.M110.147009
  42. Brill E, Hannemann F, Zapp J, Bruning G, Jauch J, Bernhardt R. 2014. A new cytochrome P450 system from Bacillus megaterium DSM319 for the hydroxylation of 11-keto-${\beta}$-boswellic acid (KBA). Appl. Microbiol. Biotechnol. 98: 1701-1717.
  43. Donova MV, Egorova OV. 2012. Microbial steroid transformations: current state and prospects. Appl. Microbiol. Biotechnol. 94: 1423-1447. https://doi.org/10.1007/s00253-012-4078-0
  44. Wang R, Sui P, Hou X, Cao T, Jia L, Lu F, et al. 2017. Cloning and identification of a novel steroid 1${\alpha}$-hydroxylase gene from Absidia coerulea. J. Steroid Biochem. Mol. Biol. DOI: 10.1016/j.jsbmb.2017.04.006.

Cited by

  1. Bacterial steroid hydroxylases: enzyme classes, their functions and comparison of their catalytic mechanisms vol.102, pp.19, 2017, https://doi.org/10.1007/s00253-018-9239-3
  2. Taking Advantage of Promiscuity of Cold-Active Enzymes vol.10, pp.22, 2020, https://doi.org/10.3390/app10228128