DOI QR코드

DOI QR Code

Comparative Genomic Analysis of Lactobacillus plantarum GB-LP1 Isolated from Traditional Korean Fermented Food

  • Yu, Jihyun (Department of Agricultural Biotechnology and Research Institute of Population Genomics, Seoul National University) ;
  • Ahn, Sojin (Interdisciplinary Program in Bioinformatics, Seoul National University) ;
  • Kim, Kwondo (Interdisciplinary Program in Bioinformatics, Seoul National University) ;
  • Caetano-Anolles, Kelsey (Department of Agricultural Biotechnology and Research Institute of Population Genomics, Seoul National University) ;
  • Lee, Chanho (Genebiotech Co. Ltd.) ;
  • Kang, Jungsun (Genebiotech Co. Ltd.) ;
  • Cho, Kyungjin (Genebiotech Co. Ltd.) ;
  • Yoon, Sook Hee (Department of Agricultural Biotechnology and Research Institute of Population Genomics, Seoul National University) ;
  • Kang, Dae-Kyung (Department of Animal Resources Science, Dankook University) ;
  • Kim, Heebal (Department of Agricultural Biotechnology and Research Institute of Population Genomics, Seoul National University)
  • Received : 2017.04.06
  • Accepted : 2017.06.13
  • Published : 2017.08.28

Abstract

As probiotics play an important role in maintaining a healthy gut flora environment through antitoxin activity and inhibition of pathogen colonization, they have been of interest to the medical research community for quite some time now. Probiotic bacteria such as Lactobacillus plantarum, which can be found in fermented food, are of particular interest given their easy accessibility. We performed whole-genome sequencing and genomic analysis on a GB-LP1 strain of L. plantarum isolated from Korean traditional fermented food; this strain is well known for its functions in immune response, suppression of pathogen growth, and antitoxin effects. The complete genome sequence of GB-LP1 is a single chromosome of 3,040,388 bp with 2,899 predicted open reading frames. Genomic analysis of GB-LP1 revealed two CRISPR regions and genes showing accelerated evolution, which may have antibiotic and antitoxin functions. The aim of the present study was to predict strain specific-genomic characteristics and assess the potential of this new strain as lactic acid bacteria at the genomic level using in silico analysis. These results provide insight into the L. plantarum species as well as confirm the possibility of its utility as a candidate probiotic.

Keywords

References

  1. Baumler AJ, Sperandio V. 2016. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535: 85-93. https://doi.org/10.1038/nature18849
  2. Kostic AD, Xavier RJ, Gevers D. 2014. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146: 1489-1499. https://doi.org/10.1053/j.gastro.2014.02.009
  3. Virgin HW. 2014. The virome in mammalian physiology and disease. Cell 157: 142-150. https://doi.org/10.1016/j.cell.2014.02.032
  4. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. 2014. Human genetics shape the gut microbiome. Cell 159: 789-799. https://doi.org/10.1016/j.cell.2014.09.053
  5. Macfarlane S, Steed H, Macfarlane GT. 2009. Intestinal bacteria and inflammatory bowel disease. Crit. Rev. Clin. Lab. Sci. 46: 25-54. https://doi.org/10.1080/10408360802485792
  6. Paolillo R, Carratelli CR, Sorrentino S, Mazzola N, Rizzo A. 2009. Immunomodulatory effects of Lactobacillus plantarum on human colon cancer cells. Int. Immunopharmacol. 9: 1265-1271. https://doi.org/10.1016/j.intimp.2009.07.008
  7. Parvez S, Malik KA, Ah Kang S, Kim HY. 2006. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100: 1171-1185. https://doi.org/10.1111/j.1365-2672.2006.02963.x
  8. Shah N, Patel A, Ambalam P, Holst O, Ljungh A, Prajapati J. 2016. Determination of an antimicrobial activity of Weissella confusa, Lactobacillus fermentum, and Lactobacillus plantarum against clinical pathogenic strains of Escherichia coli and Staphylococcus aureus in co-culture. Ann. Microbiol. 66: 1137-1143. https://doi.org/10.1007/s13213-016-1201-y
  9. Nomoto K. 2005. Prevention of infections by probiotics. J. Biosci. Bioeng. 100: 583-592. https://doi.org/10.1263/jbb.100.583
  10. Stewart PS, William Costerton J. 2001. Antibiotic resistance of bacteria in biofilms. Lancet 358: 135-138. https://doi.org/10.1016/S0140-6736(01)05321-1
  11. Eaton TJ, Gasson MJ. 2001. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl. Environ. Microbiol. 67: 1628-1635. https://doi.org/10.1128/AEM.67.4.1628-1635.2001
  12. Mah T-F, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA. 2003. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426: 306-310. https://doi.org/10.1038/nature02122
  13. Morelli L. 2007. In vitro assessment of probiotic bacteria: from survival to functionality. Int. Dairy J. 17: 1278-1283. https://doi.org/10.1016/j.idairyj.2007.01.015
  14. Feil H, Feil WS, Chain P, Larimer F, DiBartolo G, Copeland A, et al. 2005. Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc. Natl. Acad. Sci. USA 102: 11064-11069. https://doi.org/10.1073/pnas.0504930102
  15. Singh G, Sharma D, Singh V, Rani J, Marotta F, Kumar M, et al. 2017. In silico functional elucidation of uncharacterized proteins of Chlamydia abortus strain LLG. Future Sci. OA 3: FSO169. https://doi.org/10.4155/fsoa-2016-0066
  16. Siezen RJ, van Enckevort FH, Kleerebezem M, Teusink B. 2004. Genome data mining of lactic acid bacteria: the impact of bioinformatics. Curr. Opin. Biotechnol. 15: 105-115. https://doi.org/10.1016/j.copbio.2004.02.002
  17. Liu W-H, Yang C-H, Lin C-T, Li S-W, Cheng W-S, Jiang Y-P, et al. 2015. Genome architecture of Lactobacillus plantarum PS128, a probiotic strain with potential immunomodulatory activity. Gut Pathog. 7: 22. https://doi.org/10.1186/s13099-015-0068-y
  18. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10: 563-569. https://doi.org/10.1038/nmeth.2474
  19. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75. https://doi.org/10.1186/1471-2164-9-75
  20. Bose T, Haque MM, Reddy C, Mande SS. 2015. COGNIZER: a framework for functional annotation of metagenomic datasets. PLoS One 10: e0142102. https://doi.org/10.1371/journal.pone.0142102
  21. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. 2009. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25: 119-120. https://doi.org/10.1093/bioinformatics/btn578
  22. Richter M, Rossello-Mora R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106: 19126-19131. https://doi.org/10.1073/pnas.0906412106
  23. Kim KM, Sung S, Caetano-Anolles G, Han JY, Kim H. 2008. An approach of orthology detection from homologous sequences under minimum evolution. Nucleic Acids Res. 36: e110. https://doi.org/10.1093/nar/gkn485
  24. Loytynoja A, Goldman N. 2008. Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 320: 1632-1635. https://doi.org/10.1126/science.1158395
  25. Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56: 564-577. https://doi.org/10.1080/10635150701472164
  26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  27. Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG, Parkhill J. 2005. ACT: the Artemis comparison tool. Bioinformatics 21: 3422-3423. https://doi.org/10.1093/bioinformatics/bti553
  28. Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24: 1586-1591. https://doi.org/10.1093/molbev/msm088
  29. Grissa I, Vergnaud G, Pourcel C. 2007. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 35: W52-W57. https://doi.org/10.1093/nar/gkm360
  30. Wolf YI, Makarova KS, Yutin N, Koonin EV. 2012. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer. Biol. Direct 7: 46. https://doi.org/10.1186/1745-6150-7-46
  31. Zhang Z-Y, Liu C, Zhu Y-Z, Wei Y-X, Tian F, Zhao G-P, et al. 2012. Safety assessment of Lactobacillus plantarum JDM1 based on the complete genome. Int. J. Food Microbiol. 153: 166-170. https://doi.org/10.1016/j.ijfoodmicro.2011.11.003
  32. Hacker J, Carniel E. 2001. Ecological fitness, genomic islands and bacterial pathogenicity. EMBO Rep. 2: 376-381. https://doi.org/10.1093/embo-reports/kve097
  33. Roberts AP, Kreth J. 2014. The impact of horizontal gene transfer on the adaptive ability of the human oral microbiome.
  34. Wiedenbeck J, Cohan FM. 2011. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol. Rev. 35: 957-976. https://doi.org/10.1111/j.1574-6976.2011.00292.x
  35. Allali N, Afif H, Couturier M, Van Melderen L. 2002. The highly conserved TldD and TldE proteins of Escherichia coli are involved in microcin B17 processing and in CcdA degradation. J. Bacteriol. 184: 3224-3231. https://doi.org/10.1128/JB.184.12.3224-3231.2002
  36. Yang S-C, Lin C-H, Sung CT, Fang J-Y. 2014. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front. Microbiol. 5: 241.
  37. Claud EC, Keegan KP, Brulc JM, Lu L, Bartels D, Glass E, et al. 2013. Bacterial community structure and functional contributions to emergence of health or necrotizing enterocolitis in preterm infants. Microbiome 1: 20. https://doi.org/10.1186/2049-2618-1-20
  38. Glenn K, Smith KS. 2015. Allosteric regulation of Lactobacillus plantarum xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp). J. Bacteriol. 197: 1157-1163. https://doi.org/10.1128/JB.02380-14
  39. Pan Y, Ni R, Deng Q, Huang X, Zhang Y, Lu C, et al. 2013. Glyoxylate reductase/hydroxypyruvate reductase: a novel prognostic marker for hepatocellular carcinoma patients after curative resection. Pathobiology 80: 155-162. https://doi.org/10.1159/000346476
  40. Duan X, Hu S, Zhou P, Zhou Y, Liu Y, Jiang Z. 2014. Characterization and crystal structure of a first fungal glyoxylate reductase from Paecilomyes thermophila. Enzyme Microb. Technol. 60: 72-79. https://doi.org/10.1016/j.enzmictec.2014.04.004
  41. Knight J, Wood KD, Lange JN, Assimos DG, Holmes RP. 2016. Oxalate formation from glyoxal in erythrocytes. Urology 88: 226.e11-226.e15. https://doi.org/10.1016/j.urology.2015.10.014
  42. Abratt VR, Reid SJ. 2010. Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease. Adv. Appl. Microbiol. 72: 63-87.
  43. Lahm A, Paolini C, Pallaoro M, Nardi M, Jones P, Neddermann P, et al. 2007. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc. Natl. Acad. Sci. USA 104: 17335-17340. https://doi.org/10.1073/pnas.0706487104
  44. Tanaka Y, Kasahara K, Hirose Y, Murakami K, Kugimiya R, Ochi K. 2013. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. J. Bacteriol. 195: 2959-2970. https://doi.org/10.1128/JB.00147-13

Cited by

  1. Complete genome sequence of Lactobacillus pentosus SLC13, isolated from mustard pickles, a potential probiotic strain with antimicrobial activity against foodborne pathogenic microorganisms vol.10, pp.None, 2018, https://doi.org/10.1186/s13099-018-0228-y
  2. Metaproteomics insights into traditional fermented foods and beverages vol.19, pp.5, 2017, https://doi.org/10.1111/1541-4337.12601
  3. Lactiplantibacillus plantarum LRCC5314 includes a gene for serotonin biosynthesis via the tryptophan metabolic pathway vol.59, pp.12, 2017, https://doi.org/10.1007/s12275-021-1472-2