DOI QR코드

DOI QR Code

Synthesis of β-Galactooligosaccharide Using Bifidobacterial β-Galactosidase Purified from Recombinant Escherichia coli

  • Oh, So Young (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Youn, So Youn (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Park, Myung Soo (Research Center, BIFIDO Co. Ltd.) ;
  • Kim, Hyoung-Geun (Graduate School of Biotechnology and Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Baek, Nam-In (Graduate School of Biotechnology and Oriental Medicine Biotechnology, Kyung Hee University) ;
  • Li, Zhipeng (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Ji, Geun Eog (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
  • Received : 2017.02.23
  • Accepted : 2017.05.21
  • Published : 2017.08.28

Abstract

Galactooligosaccharides (GOSs) are known to be selectively utilized by Bifidobacterium, which can bring about healthy changes of the composition of intestinal microflora. In this study, ${\beta}-GOS$ were synthesized using bifidobacterial ${\beta}-galactosidase$ (G1) purified from recombinant E. coli with a high GOS yield and with high productivity and enhanced bifidogenic activity. The purified recombinant G1 showed maximum production of ${\beta}-GOSs$ at pH 8.5 and $45^{\circ}C$. A matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of the major peaks of the produced ${\beta}-GOSs$ showed MW of 527 and 689, indicating the synthesis of ${\beta}-GOSs$ at degrees of polymerization (DP) of 3 and DP4, respectively. The trisaccharides were identified as ${\beta}-{\text\tiny{D}}$-galactopyranosyl-($1{\rightarrow}4$)-O-${\beta}-{\text\tiny{D}}$-galactopyranosyl-($1{\rightarrow}4$)-O-${\beta}-{\text\tiny{D}}$-glucopyranose, and the tetrasaccharides were identified as ${\beta}-{\text\tiny{D}}$-galactopyranosyl-($1{\rightarrow}4$)-O-${\beta}-{\text\tiny{D}}$-galactopyranosyl-($1{\rightarrow}4$)-O-${\beta}-{\text\tiny{D}}$-galactopyranosyl-($1{\rightarrow}4$)-O-${\beta}-{\text\tiny{D}}$-glucopyranose. The maximal production yield of GOSs was as high as 25.3% (w/v) using purified recombinant ${\beta}-galactosidase$ and 36% (w/v) of lactose as a substrate at pH 8.5 and $45^{\circ}C$. After 140 min of the reaction under this condition, 268.3 g/l of GOSs was obtained. With regard to the prebiotic effect, all of the tested Bifidobacterium except for B. breve grew well in BHI medium containing ${\beta}-GOS$ as a sole carbon source, whereas lactobacilli and Streptococcus thermophilus scarcely grew in the same medium. Only Bacteroides fragilis, Clostridium ramosum, and Enterobacter cloacae among the 17 pathogens tested grew in BHI medium containing ${\beta}-GOS$ as a sole carbon source; the remaining pathogens did not grow in the same medium. Consequently, the ${\beta}-GOS$ are expected to contribute to the beneficial change of intestinal microbial flora.

Keywords

References

  1. Roberfroid M. 2007. Prebiotics: the concept revisited. J. Nutr. 137: 830S-837S. https://doi.org/10.1093/jn/137.3.830S
  2. Osman A, Tzortzis G, Rastall RA, Charalampopoulos D. 2010. A comprehensive investigation of the synthesis of prebiotic galactooligosaccharides by whole cells of Bifidobacterium bifidum NCIMB 41171. J. Biotechnol. 150: 140-148.
  3. Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid MB. 2004. Dietary modulation of the human colonic microbiota. Nutr. Res. Rev. 17: 259-275. https://doi.org/10.1079/NRR200479
  4. Hsu C-A, Lee S-L, Chou C-C. 2007. Enzymatic production of galactooligosaccharides by ${\beta}$-galactosidase from Bifidobacterium longum BCRC 15708. J. Agric. Food Chem. 55: 2225-2230. https://doi.org/10.1021/jf063126+
  5. Tzortzis G, Goulas AK, Gee JM, Gibson GR. 2005. A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo. J. Nutr. 135: 1726-1731. https://doi.org/10.1093/jn/135.7.1726
  6. Quintero M, Maldonado M, Perez-Munoz M, Jimenez R, Fangman T, Rupnow J, et al. 2011. Adherence inhibition of Cronobacter sakazakii to intestinal epithelial cells by prebiotic oligosaccharides. Curr. Microbiol. 62: 1448-1454. https://doi.org/10.1007/s00284-011-9882-8
  7. Sinclair HR, de Slegte J, Gibson GR, Rastall RA. 2009. Galactooligosaccharides (GOS) inhibit Vibrio cholerae toxin binding to its GM1 receptor. J. Agric. Food Chem. 57: 3113-3119. https://doi.org/10.1021/jf8034786
  8. Shoaf K, Mulvey GL, Armstrong GD, Hutkins RW. 2006. Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect. Immun. 74: 6920-6928. https://doi.org/10.1128/IAI.01030-06
  9. Searle LE, Cooley WA, Jones G, Nunez A, Crudgington B, Weyer U, et al. 2010. Purified galactooligosaccharide, derived from a mixture produced by the enzymic activity of Bifidobacterium bifidum, reduces Salmonella enterica serovar Typhimurium adhesion and invasion in vitro and in vivo. J. Med. Microbiol. 59: 1428-1439. https://doi.org/10.1099/jmm.0.022780-0
  10. Cardelle-Cobas A, Corzo N, Olano A, Pelaez C, Requena T, Avila M. 2011. Galactooligosaccharides derived from lactose and lactulose: influence of structure on Lactobacillus, Streptococcus and Bifidobacterium growth. Int. J. Food Microbiol. 149: 81-87. https://doi.org/10.1016/j.ijfoodmicro.2011.05.026
  11. Vulevic J, Juric A, Tzortzis G, Gibson GR. 2013. A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J. Nutr. 143: 324-331. https://doi.org/10.3945/jn.112.166132
  12. Vulevic J, Juric A, Walton GE, Claus SP, Tzortzis G, Toward RE, et al. 2015. Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br. J. Nutr. 114: 586-595. https://doi.org/10.1017/S0007114515001889
  13. Vulevic J, Drakoularakou A, Yaqoob P, Tzortzis G, Gibson GR. 2008. Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (BGOS) in healthy elderly volunteers. Am. J. Clin. Nutr. 88: 1438-1446.
  14. Silk D, Davis A, Vulevic J, Tzortzis G, Gibson G. 2009. Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment. Pharmacol. Ther. 29: 508-518. https://doi.org/10.1111/j.1365-2036.2008.03911.x
  15. Li Z, Jin H, Oh SY, Ji GE. 2016. Anti-obese effects of two lactobacilli and two bifidobacteria on ICR mice fed on a high fat diet. Biochem. Biophys. Res. Commun. 480: 222-227. https://doi.org/10.1016/j.bbrc.2016.10.031
  16. Iraporda C, Errea A, Romanin DE, Cayet D, Pereyra E, Pignataro O, et al. 2015. Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology 220: 1161-1169. https://doi.org/10.1016/j.imbio.2015.06.004
  17. Pan X-D, Chen F-Q, Wu T-X, Tang H-G, Zhao Z-Y. 2009. Prebiotic oligosaccharides change the concentrations of short-chain fatty acids and the microbial population of mouse bowel. J. Zhejiang Univ. Sci. B 10: 258-263. https://doi.org/10.1631/jzus.B0820261
  18. Garrido D, Ruiz-Moyano S, Jimenez-Espinoza R, Eom H-J, Block DE, Mills DA. 2013. Utilization of galactooligosaccharides by Bifidobacterium longum subsp. infantis isolates. Food Microbiol. 33: 262-270. https://doi.org/10.1016/j.fm.2012.10.003
  19. Bakken AP, Hill CG, Amundson CH. 1989. Hydrolysis of lactose in skim milk by immobilized ${\beta}$-galactosidase in a spiral flow reactor. Biotechnol. Bioeng. 33: 1249-1257. https://doi.org/10.1002/bit.260331005
  20. Bakken AP, Hill CG, Amundson CH. 1992. Hydrolysis of lactose in skim milk by immobilized ${\beta}$-galactosidase (Bacillus circulans). Biotechnol. Bioeng. 39: 408-417. https://doi.org/10.1002/bit.260390407
  21. Chen W, Chen H, Xia Y, Zhao J, Tian F, Zhang H. 2008. Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus. J. Dairy Sci. 91: 1751-1758. https://doi.org/10.3168/jds.2007-617
  22. Gaur R, Pant H, Jain R, Khare S. 2006. Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae ${\beta}$-galactosidase. Food Chem. 97: 426-430. https://doi.org/10.1016/j.foodchem.2005.05.020
  23. Martinez-Villaluenga C, Cardelle-Cobas A, Corzo N, Olano A, Villamiel M. 2008. Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by ${\beta}$-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chem. 107: 258-264. https://doi.org/10.1016/j.foodchem.2007.08.011
  24. Urrutia P, Rodriguez-Colinas BR, Fernandez-Arrojo L, Ballesteros AO, Wilson L, Illanes AS, et al. 2013. Detailed analysis of galactooligosaccharides synthesis with ${\beta}$-galactosidase from Aspergillus oryzae. J. Agric. Food Chem. 61: 1081-1087. https://doi.org/10.1021/jf304354u
  25. Oliveira C, Guimaraes PM, Domingues L. 2011. Recombinant microbial systems for improved ${\beta}$-galactosidase production and biotechnological applications. Biotechnol. Adv. 29: 600-609. https://doi.org/10.1016/j.biotechadv.2011.03.008
  26. Tzortzis G, Goulas AK, Gibson GR. 2005. Synthesis of prebiotic galactooligosaccharides using whole cells of a novel strain, Bifidobacterium bifidum NCIMB 41171. Appl. Microbiol. Biotechnol. 68: 412-416. https://doi.org/10.1007/s00253-005-1919-0
  27. Rabiu BA, Jay AJ, Gibson GR, Rastall RA. 2001. Synthesis and fermentation properties of novel galacto-oligosaccharides by ${\beta}$-galactosidases from Bifidobacterium species. Appl. Environ. Microbiol. 67: 2526-2530. https://doi.org/10.1128/AEM.67.6.2526-2530.2001
  28. Depeint F, Tzortzis G, Vulevic J, I'Anson K, Gibson GR. 2008. Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo-controlled intervention study. Am. J. Clin. Nutr. 87: 785-791. https://doi.org/10.1093/ajcn/87.3.785
  29. Osman A, Tzortzis G, Rastall RA, Charalampopoulos D. 2013. High yield production of a soluble bifidobacterial ${\beta}$-galactosidase (BbgIV) in E. coli DH5${\alpha}$ with improved catalytic efficiency for the synthesis of prebiotic galactooligosaccharides. J. Agric. Food Chem. 61: 2213-2223. https://doi.org/10.1021/jf304792g
  30. Han YR, Youn SY, Ji GE, Park MS. 2014. Production of ${\alpha}$-and ${\beta}$-galactosidases from Bifidobacterium longum subsp. longum RD47. J. Microbiol. Biotechnol. 24: 675-682. https://doi.org/10.4014/jmb.1402.02037
  31. Vigsnaes LK, Nakai H, Hemmingsen L, Andersen JM, Lahtinen SJ, Rasmussen LE, et al. 2013. In vitro growth of four individual human gut bacteria on oligosaccharides produced by chemoenzymatic synthesis. Food Funct. 4: 784-793. https://doi.org/10.1039/c3fo30357h
  32. Fai AEC, da Silva JB, de Andrade CJ, Bution ML, Pastore GM. 2014. Production of prebiotic galactooligosaccharides from lactose by Pseudozyma tsukubaensis and Pichia kluyveri. Biocatal. Agric. Biotechnol. 3: 343-350.
  33. Yu L, O'Sullivan D. 2014. Production of galactooligosaccharides using a hyperthermophilic ${\beta}$-galactosidase in permeabilized whole cells of Lactococcus lactis. J. Dairy Sci. 97: 694-703. https://doi.org/10.3168/jds.2013-7492
  34. Hinz SW, Van den Broek LA, Beldman G, Vincken J-P, Voragen AG. 2004. ${\beta}$-Galactosidase from Bifidobacterium adolescentis DSM20083 prefers ${\beta}$(1,4)-galactosides over lactose. Appl. Microbiol. Biotechnol. 66: 276-284.
  35. Hung M-N, Lee B. 2002. Purification and characterization of a recombinant ${\beta}$-galactosidase with transgalactosylation activity from Bifidobacterium infantis HL96. Appl. Microbiol. Biotechnol. 58: 439-445. https://doi.org/10.1007/s00253-001-0911-6
  36. Dumortier V, Brassart C, Bouquelet S. 1994. Purification and properties of ${\beta}$-D-galactosidase from Bifidobacterium bifidum exhibiting a transgalactosylation reaction. Biotechnol. Appl. Biochem. 19: 341-354.
  37. Ji E-S, Park N-H, Oh D-K. 2005. Galacto-oligosaccharide production by a thermostable recombinant ${\beta}$-galactosidase from Thermotoga maritima. World J. Microbiol. Biotechnol. 21: 759-764. https://doi.org/10.1007/s11274-004-5487-8
  38. Zheng P, Yu H, Sun Z, Ni Y, Zhang W, Fan Y, Xu Y. 2006. Production of galacto-oligosaccharides by immobilized recombinant ${\beta}$-galactosidase from Aspergillus candidus. Biotechnol. J. 1: 1464-1470. https://doi.org/10.1002/biot.200600100
  39. Sela DA. 2011. Bifidobacterial utilization of human milk oligosaccharides. Int. J. Food Microbiol. 149: 58-64. https://doi.org/10.1016/j.ijfoodmicro.2011.01.025
  40. Zivkovic AM, German JB, Lebrilla CB, Mills DA. 2011. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc. Natl. Acad. Sci. USA 108: 4653-4658. https://doi.org/10.1073/pnas.1000083107
  41. Sela DA, Mills DA. 2010. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 18: 298-307. https://doi.org/10.1016/j.tim.2010.03.008
  42. Courtin CM, Swennen K, Verjans P, Delcour JA. 2009. Heat and pH stability of prebiotic arabinoxylooligosaccharides, xylooligosaccharides and fructooligosaccharides. Food Chem. 112: 831-837. https://doi.org/10.1016/j.foodchem.2008.06.039
  43. Gourbeyre P, Desbuards N, Gremy G, Le Gall S, Champ M, Denery-Papini S, et al. 2012. Exposure to a galactooligosaccharides/ inulin prebiotic mix at different developmental time points differentially modulates immune responses in mice. J. Agric. Food Chem. 60: 11942-11951. https://doi.org/10.1021/jf3036403

Cited by

  1. Synthesis of Stachyobifiose Using Bifidobacterial α-Galactosidase Purified from Recombinant Escherichia coli vol.66, pp.5, 2017, https://doi.org/10.1021/acs.jafc.7b04703
  2. Fermentability of a Novel Galacto-Oligosaccharide Mixture by Lactobacillus spp. and Bifidobacterium spp. vol.23, pp.12, 2018, https://doi.org/10.3390/molecules23123352
  3. Enzymatic synthesis of β-galactosyl fucose using recombinant bifidobacterial β-galactosidase and its prebiotic effect vol.36, pp.3, 2017, https://doi.org/10.1007/s10719-019-09871-5
  4. Prebiotic galactooligosaccharides production from lactose and lactulose by Lactobacillus delbrueckii subsp. bulgaricus CRL450 vol.11, pp.7, 2017, https://doi.org/10.1039/d0fo00942c
  5. β-galactosidase GALA from Bacillus circulans with high transgalactosylation activity vol.12, pp.1, 2017, https://doi.org/10.1080/21655979.2021.1988370
  6. Selective Utilization of the Human Milk Oligosaccharides 2′-Fucosyllactose, 3-Fucosyllactose, and Difucosyllactose by Various Probiotic and Pathogenic Bacteria vol.69, pp.1, 2021, https://doi.org/10.1021/acs.jafc.0c06041
  7. Bifidobacterial β-Galactosidase-Mediated Production of Galacto-Oligosaccharides: Structural and Preliminary Functional Assessments vol.12, pp.None, 2017, https://doi.org/10.3389/fmicb.2021.750635