DOI QR코드

DOI QR Code

The Effect of Cyclone Vortex Finder Configurations on the Fine Particle Collection Efficiencies

사이클론 선회류 약화기 구조에 따른 미세먼지 집진효율 연구

  • Jeong, Dong Gyun (Department of Environmental Safety Engineering, Ajou University) ;
  • Kim, Beom Seok (Department of Environmental Safety Engineering, Ajou University) ;
  • Hong, Min Sun (Department of Environmental Safety Engineering, Ajou University)
  • 정동균 (아주대학교 환경안전공학과) ;
  • 김범석 (아주대학교 환경안전공학과) ;
  • 홍민선 (아주대학교 환경안전공학과)
  • Received : 2017.02.20
  • Accepted : 2017.06.16
  • Published : 2017.06.30

Abstract

The effect of vortex finder confiqurations on the PM-10 collection efficiencies has been investigated using 7 different types of cyclones. Cyclone inlet velocities were calculated by computational fluid dynamics analysis and PM-10 collection efficiencies were measured from experimental apparatus. The inlet velocities of normal, P and A type cyclones were calculated 15.48 m/sec, 16.03 m/sec and 15.9 m/sec, respectively while experimental results show that PM-10 collection efficiencies were increased 4% for P type and 7% for A type cyclones compared to normal cyclone. Also it was found that there exist optimum parallel head lengths for both P and A type cyclones to maximize the PM-10 collection efficiencies.

선회류 약화기(vortex finder)의 구조와 치수를 변형한 7종류의 cyclone을 제작해 PM-10 집진효율 자료를 도출하였고 CFD 분석을 통한 사이클론 입구 속도를 계산하였다. 입구속도는 normal, P, A type 사이클론의 경우 15.48 m/sec, 16.03 m/sec 그리고 15.90 m/sec로 계산되었고 PM-10 집진효율 실험결과는 P tpye과 A type의 사이클론의 경우 normal 사이클론에 비해 4%와 7%의 집진효율이 증가하였다. 또한 평행부의 길이가 증가함에 따라 PM-10의 집진효율은 증가하다 감소하여 집진효율을 최대화 할 수 있는 길이가 존재함을 보여주었다.

Keywords

References

  1. Kim, S. Y., "Association between fine particulate matter (PM2.5) components and cardiovascular health in MESA," Symposium Conducted at the Meeting of Environ. Health and Toxicol., 5, 154-175(2014).
  2. Wang, B. et al. "Numerical study of gas-solid flow in a cyclone separator," Appl. Math. Modell., 30, 1326-1342(2006). https://doi.org/10.1016/j.apm.2006.03.011
  3. Wark, K., Warner, C. F. and Davis, W. T., "Air pollution; Its Origin and Control," 3rd. ed., Addison-Wesley, Menlo Park, 228(1988).
  4. Chu, K. W., Kuang, S. B. and Yu, A. B., "Particle Scale Modelling of the Multiphase Flow in a Dence Mediym Cyclone: Effect of Solid Flow Rate," Minerals Eng., 33, 34-45(2012). https://doi.org/10.1016/j.mineng.2011.12.011
  5. Bingtao, Z., "Prediction of Gas-Particle Separation Efficiency for cyclones: A Time-off light Model," Sep. Purific. Technol., 85, 171-177(2012). https://doi.org/10.1016/j.seppur.2011.10.006
  6. Kang, S. K., "A Study for Collection and Mixing Characteristics of Particles in a Modified Cyclone Particle Collector," J. Korea Academia-Ind. Cooperat. Soc., 14(1), 485-492(2013). https://doi.org/10.5762/KAIS.2013.14.1.485
  7. Elsayed, K. and Lacor, C., "The effect of cyclone inlet dimensions on the flow pattern and performance," Appl. Math. Modell., 35, 1952-1968(2011). https://doi.org/10.1016/j.apm.2010.11.007
  8. Ji, Z., Xiong, Z., Chen, H. and Wu, H., "Experimental investigations on a cyclone separator performance at an extremely low particle concentration," Powder Technol., 191, 83-91(2009).